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Abstract

Dual supervision refers to the general set-
ting of learning from both labeled examples
as well as labeled features. Labeled features
are naturally available in tasks such as text
classification where it is frequently possible
to provide domain knowledge in the form of
words that associate strongly with a class. In
this paper, we consider the novel problem of
active dual supervision, or, how to optimally
query an example and feature labeling oracle
to simultaneously collect two different forms
of supervision, with the objective of build-
ing the best classifier in the most cost effec-
tive manner. We apply classical uncertainty
and experimental design based active learn-
ing schemes to graph/kernel-based dual su-
pervision models. Empirical studies confirm
the potential of these schemes to significantly
reduce the cost of acquiring labeled data for
training high-quality models.

1. Introduction

The performance of learning algorithms is typically
bounded by the amount and quality of labeled ex-
amples. To streamline the costly process of acquir-
ing labeled data, it is often worthwhile to turn to
active learning. Traditional active learning schemes
query a human for labels of intelligently chosen exam-
ples. However, human effort may also be profitably
expended in collecting alternative forms of supervi-
sion. Consider, for instance, the text-categorization
task of classifying movie reviews as expressing posi-
tive or negative opinion. One could read through sev-
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eral reviews labeling them based on the sentiment ex-
pressed therein. Alternatively, one could look though a
list of words (features) commonly occurring in movie
reviews, such as mesmerizing and boring, and label
them as positive or negative. We refer to the latter
form of supervision as feature labels. This kind of la-
beling is qualitatively different from reading and la-
beling documents – it requires a human to condense
prior linguistic experience with a word into a senti-
ment label that reflects the net emotion that the word
evokes. Ideally, one should be able to learn a classi-
fier from a combination of both kinds of supervisory
inputs. In general, these forms of supervision are not
mutually redundant, have different acquisition costs,
human annotation quality and degrees of utility to-
wards learning a dual supervision model.

Recent papers (Melville et al., 2009; Sindhwani et al.,
2008; Druck et al., 2008) have demonstrated that the
availability of labeled features can significantly reduce
the number of labeled examples required to build high-
quality classifiers. Having algorithms that can incor-
porate dual supervision, gives rise to the novel task of
active learning in this setting – i.e., how can we se-
lect the most informative examples and/or features to
be labeled, so as to build the best model at the low-
est cost. In this paper we explore this task of Active
Dual Supervision. While traditional active learning
focuses on estimating the value of acquiring the label
of unlabeled examples, in active dual supervision, it
is important to also estimate the value of information
of feature labels – this has not been attempted before
to the best of our knowledge. Furthermore, an ideal
scheme should be able to trade-off the costs and ben-
efits of the different forms of labels.

In this paper, we apply classical uncertainty and ex-
perimental design based schemes for feature-side ac-
tive learning and active dual supervision. At their
core, our methods utilize a new transductive bipartite
graph approach for dual supervision closely related to
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the framework introduced in (Sindhwani et al., 2008).
We report extensive empirical results to emphasize the
value of feature labels, and to demonstrate the hith-
erto untapped potential of feature-side active learning
and active dual supervision.

2. Learning with Dual Supervision

Consider a document classification problem where we
are given an n×d document-term matrix X, expressing
n documents as bag-of-words feature vectors over a vo-
cabulary of d words. Let y denote the associated n×1
document labels vector with yi ∈ {+1, 0,−1} where 0
implies that the document is unlabeled. In a dual su-
pervision setting, we also have access to a sparse d× 1
feature labels vector z where zi = 1 suggests that the
corresponding word has strong affinity with the posi-
tive class and zi = −1 similarly suggests affinity with
the negative class. Given minimal dual supervision in
the form of highly sparse vectors y,z, the goal is to
construct an accurate classification model. Note that
since text classification is the primary application con-
sidered in this paper, we use documents/words inter-
changeably with examples/features.

Our dual supervision model is a graph-based tranduc-
tive model inspired by the methods proposed in (Sind-
hwani et al., 2008). The vectors (y,z) are treated as
partial labels on the vertices of a bipartite graph that
represents the data matrix. Documents form one set
of vertices and words the other, with edges represent-
ing occurrence of a word in a document. Starting from
the partial labeling, the key intuition behind this ap-
proach is to effectively diffuse label information to un-
labeled data from both sides of the data matrix. The
overall setup of this paper is schematically depicted
in Figure 1, showing labeled words for the sentiment
classification application mentioned in Section 1. In
the active learning setting, we also have access to doc-

ument and word oracles. An active dual supervision
scheme attempts to identify the most useful labels –
for documents and/or words – to acquire from these
oracles, with the goal of building the best predictive
model. We discuss such schemes in the next section.
For the rest of this section, we focus on the static set-
ting where a fixed partial labeling (y,z) is available
over examples and features.

In practice, to study this setting, we need to simu-
late partial labellings on a collection of datasets. It
is convenient for us to describe upfront the 5 popu-
lar binary text classification datasets used in various
studies throughout this paper. The movies dataset
(2000 examples, 24841 features), popular in the sen-
timent analysis literature, poses the task of classi-

Figure 1. Graph based Active Dual Supervision

fying the sentiment of movie reviews into positive
or negative. ibm-mac (1937 examples, 9822 fea-
tures), baseball-hockey (1988 examples, 12148 fea-
tures) and med-space (1972 examples, 17084 features)
datasets are drawn from the 20-newsgroups text col-
lection where the task is to assign messages into the
newsgroup in which they appeared. The financial-

healthcare (1364 examples, 8956 features) dataset is
drawn from the Industry-sector collection where the
task is to distinguish between webpages associated
with financial versus healthcare industry.

Since these datasets come with labels for all docu-
ments, some of these labels can be suppressed in or-
der to generate a partial labeling over documents in
a straightforward manner. For words, however, we
do not have a gold-standard set of labels. We there-
fore construct a word oracle in the following manner
(also see (Druck et al., 2008)). The information gain
of words is computed using binary word representa-
tions with respect to the known true class labels in
the training splits of a dataset. Next, out of the total
vocabulary, only the top few words as ranked by infor-
mation gain are assigned a label. This label is the class
in which the word appears more frequently. The ora-
cle returns a “dont know” response (0-valued label in
our formulation) for the remaining words. Thus, this
oracle simulates a human domain expert who is able
to recognize and label the most relevant task-specific
words, and also reject a word that falls below the rel-
evance threshold. For instance, in sentiment classifi-
cation, we would expect a “dont know” response for
non-polar words such as “drama”. This oracle is then
used to generate fixed partial word labellings, and for
active querying in Section 3.
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2.1. Graph-Based Dual Supervision

We now outline some technical details for our model.
If a word j occurs in document i, there is an undi-
rected weighted edge between the associated nodes of
the bipartite graph, with weight Xij . The adjacency
matrix, W, and the associated normalized Laplacian,

L̃, of this graph are given by, W =

[

0 X

XT 0

]

, L̃ =
[

I X̃

X̃T I

]

. Here X̃ is a normalized version of the

data matrix defined by X̃ = D
− 1

2

1 XD
− 1

2

2 where D1,D2

are diagonal matrices of appropriate size defined by
D1ii

=
∑d

j=1
Xij and D2jj

=
∑n

i=1
Xij . Let fd denote

the n×1 prediction variables over the n document ver-
tices and fw denote the d×1 prediction variables over
d word vertices. Then, Graph transduction (see e.g.,
(Belkin et al., 2004)) solves the following optimization
problem to find f⋆ = (fd,fw), thereby completing the
labeling of the bipartite graph,

f⋆ = argmin
f :

∑

i
fi=0

(f − t)TC(f − t) + µf⊤L̃f (1)

where µ is a real-valued regularization parameter (set
to its default value of 0.01 for all experiments in this
paper), t = [y⊤ z⊤]⊤ is the concatenated label vector,
and C is a diagonal cost matrix, C = diag( 1

ly
|y|; 1

lz
|z|),

that makes the loss terms measure average squared
loss over ly labeled documents and lz labeled words
separately. The solution is obtained by solving a linear
system, where the high sparsity of the data matrix
allows scaling upto very large datasets using iterative
techniques (e.g., conjugate gradient). For convenience,
we henceforth refer to this approach as Graph-based
Dual Supervision, abbreviated as GRADS .

Kernel Formulation and Connection to SVD: It
is well-known (Smola & Kondor, 2004) that a graph
regularizer L̃ can be associated with a kernel matrix
K = L̃†, where † denotes pseudo-inverse, such that
the graph transduction solution obtained from Eqn. 1
can instead be recovered from standard kernel reg-
ularized least squares training over just the labeled
entities, i.e. labeled examples and labeled features,
f⋆

i =
∑

j K(i, j)α⋆
j where α⋆ = (KLL + µC−1

L ) tL
where L indexes labeled examples and labeled fea-
tures, and t and C are the same as in the context
of Eqn. 1. The kernel matrix can also be plugged into
other non-linear models such as SVMs, Logistic Re-
gression and Gaussian Processes. In practice, it may
be computationally preferable to solve Eqn. 1 exploit-
ing the sparsity of L̃ instead of dealing with a dense
K as in this formulation. Note that the kernel ma-
trix K is a (n + d) × (n + d) similarity matrix over

both documents and words. The eigen-decomposition
of the pseudo-inverse of the normalized Laplacian L̃

of a bipartite graph can be explicitly computed in
terms of the SVD of X̃. This is a non-trivial compu-
tation and we point the reader to Corollary 2 of (Ho
& Dooren, 2005). From this calculation (not shown
here), one can explicitly construct a “semantic” feature
map ψ : D∪W 7→ Rn+d defined in terms of the left and
right singular vectors of X̃ that maps the set of docu-
ments D and the set of words W to points in the same
euclidean space such that K(i, j) = ψ(i)Tψ(j). From
this viewpoint, labeled features in this framework are
simply additional labeled data points that augment
the point cloud of labeled documents in this semantic
feature space. Other mechanisms for euclidean embed-
ding of co-occurrence data are naturally pertinent to
this discussion (Globerson et al., 2007).

Higher-order Graph Regularizers: We point the
reader to (Smola & Kondor, 2004) for typical alter-
native choices of graph regularizers generated by L̃

and the form of smoothness they impose. In this pa-
per, we use iterated regularized Laplacians of the form
(L̃p + ǫI) where p is an integer parameter and ǫI is
a small ridge term with ǫ = 10−8. Effectively, the
parameter p modulates the semantic feature map, ψ,
discussed above towards the dominant singular sub-
space of X. The empirical behavior of p is reported in
sub-section 2.2.

Out-of-Sample Extension: It is straightforward
to observe that the special structure of the bipartite
Laplacian (for p = 2) implies the following: ‖L̃f‖2 =
‖fd − X̃fw‖

2 + ‖fw − X̃T fd‖
2. Thus, the regular-

ization penalty Eqn. 1 enforces a least squares fit be-
tween X̃fw and the transductive predictions fd over
documents. This suggests that one can treat fw as
parameters of a linear model and make out-of-sample
predictions on completely unseen test points as follows,

f(x) = f⊤
w x̃ = f⊤

wD
− 1

2

2 x/

√

√

√

√

d
∑

i=1

xi (2)

In sub-section 2.2, we compare this inductive formula
with the alternative approach of retraining the model
after incorporating test data as nodes in the bipartite
graph.

2.2. Learning from Labeled Features

A dual supervision model goes beyond traditional
learning from labeled examples, by also incorporating
feature labels explicitly. Our active learning schemes
build on GRADS which is itself a new model. In this
section, we address a natural empirical question: how
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Table 1. Comparison with GE-FL, effect of parameter p and quality of out-of-sample prediction.

Data set #labels GE-FL GRADS GRADS #labels GE-FL GRADS GRADS

(IG) p = 1 p = 5 (LDA) p = 1 p = 5
in, out in, out in, out in, out

movie 43.7 79.7 79.2, 79.3 80.0, 77.5 4.6 62.3 63.1, 62.5 66.5, 67.6
med-space 50.0 95.2 95.4, 94.8 95.0, 95.0 14.3 92.7 95.1, 95.8 94.8, 94.8
ibm-mac 43.7 85.5 85.9, 87.6 86.1, 84.4 10.4 81.7 80.9, 83.6 83.9, 82.3
baseball-hockey 50.0 95.4 95.0, 95.7 95.9, 94.9 10.8 91.5 90.5, 91.8 94.9, 94.2
financial-healthcare 50.0 58.3 58.8, 53.6 53.7, 42.0 9.4 58.8 54.0, 43.7 51.0, 44.5

well does GRADS perform with respect to competing
alternatives for learning from labeled features? To iso-
late the effectiveness of feature-side supervision, we as-
sume that no labeled examples are available. (Druck
et al., 2008) report state-of-the-art performance on
such tasks with their Generalized Expectation based
model (abbreviated GE-FL) that outperforms several
baselines (e.g., voting amongst labeled features), and
is shown to be much more cost-effective than stan-
dard example-side semi-supervised learning. In Table
1, we benchmark GRADS under exactly the same ex-
perimental setting as used by (Druck et al., 2008) for
feature labeling experiments: Datasets were divided
into training and test splits in the ratio 3:1, and re-
sults reported are F1-measures on the test set aver-
aged over 10 such random splits. For each training
split, an information gain based feature labeling or-
acle is learnt (see (Druck et al., 2008) for more de-
tails on its construction). A candidate list of 50 words
is then generated for labeling by this oracle. This is
done in two different ways to get rough bounds on
expected performance: (a) picking the top 50 words
by information gain, to simulate the situation where
the oracle is nearly completely known and (b) clus-
tering documents using LDA (latent Dirichlet alloca-
tion) and then picking top 50 features. In the latter
case, the unsupervised construction of the candidate
list ends up eliciting many “dont-know” responses and
the net number of labeled words extracted from the
oracle is much fewer (e.g, only 4.6 out of 50 in the case
of movies). Table 1 tabulates results under these two
settings (“IG” and “LDA” setting) in the two sets of
columns respectively.

We report GRADS performance under different set-
tings: (i) Setting the parameter p to 1 versus 5 to
explore the effect of higher-order graph regularization,
and (ii) obtaining transductive predictions on the test
data by including it as part of the bipartite graph
(“in”), versus treating it as completely unseen data
(“out”) on which predictions are made using the out-
of-sample prediction formula Eqn. 2. For all experi-

ments in this paper, we used µ = 0.01. From Table 1,
we can conclude the following:

• In the IG setting GE-FL and GRADS have similar
performance but GRADS outperforms GE-FL on 4
of the 5 datasets in the LDA setting.

• Higher order graph regularization (choosing p = 5
instead of p = 1) boosts performance on 3 of the 5
datasets in the case of LDA features.

• Eqn. 2 returns very high quality out-of-sample pre-
diction as evidenced by the small performance dif-
ference between “in”,“out”.

We conclude that GRADS is competitive with the
state-of-the-art methodologies for learning from la-
beled features. In practice, in the initial stages of a
feature-side active learning session, only a few, mod-
erately relevant feature labels may have been extracted
from the oracle. In such situations, as the LDA setting
results in Table 1 indicate, the co-clustering assump-
tions, and the ability to control its strength via p, are
expected to be beneficial aspects of GRADS .

3. Active Dual Supervision

Since GRADS is no different from a standard super-
vised kernel method with a particular graph-based
choice of the kernel over documents and words, many
well-developed intuitions around active learning can
immediately be brought to bear on the dual super-
vision setting. In this paper, we probe two classical
methodologies for active learning: uncertainty sam-
pling and experimental design. These schemes are
pool-based, i.e., they have access to both unlabeled
examples and unlabeled features, and can score both
dimensions with respect to their respective criterion
for measuring expected gain from acquiring a label.
While our core dual supervision model and the ac-
tive learning wrappers around them conceptually treat
the two dimensions symmetrically, we point out that
feature-supervision brings new considerations to the
discussion.
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3.1. Classical Active Learning Schemes

We first adapt some classical schemes to our setting.

Uncertainty-based Sampling: In uncertainty-
sampling, data points whose classification is most am-
biguous according to the current model are chosen
for labeling. For SVMs (Tong & Koller, 2001) this
corresponds to querying the document that is clos-
est to the current separating hyperplane, i.e., points
where the model output is closest to 0. For the graph-
based dual supervision model, we have access simulta-
neously to current predictions over examples and fea-
tures, i.e., fd and fw respectively. Thus, given the
current model, argmini |fdi

| is the best example to la-
bel, while argminj |fwj

| is the best feature to label
according to this heuristic.

As a traditional active learning scheme, uncertainty
sampling is a standard baseline for active learning re-
searchers. It is popular due to ease of implementation
and decent empirical performance on real-world prob-
lems. It is therefore an appealing strategy for acquir-
ing example labels. However, acquisition of feature
labels with the same strategy may not necessarily lead
to better models. If the model is uncertain about a
feature, it may have insufficient information and may
indeed benefit from learning its label. On the other
hand, it is also quite likely that a feature has a low
score because it does not carry much discriminative
information about the classes. In such cases, a query
is likely to come back with a “dont-know response”.
The active learner has to also ensure that queries are
not wasted with such responses, for all but the most
relevant words.

Empirical results presented in sub-section 4.1 show
that certainty sampling, i.e choosing argmaxj |fwj

| for
querying, is far more effective than uncertainty sam-
pling for feature label acquisition. It is often able to
pass a sizable number of relevant words to the ora-
cle. By contrast, uncertainty sampling has a much
lower hit-rate than even random sampling. In the early
stages of active learning, feature certainty sampling
serves to confirm or correct the orientation of model
weights on different words. It is worthwhile, however,
to keep in mind that while feature certainty may prac-
tically be very useful, it is not an optimal strategy ei-
ther, in that queries may be wasted simply confirming
confident predictions, overall providing limited benefit
to the model.

Transductive Experimental Design: In the
statistics community, active learning has been most
throughly studied under the umbrella of classical ex-
perimental design for linear least squares models. Con-

sider the data matrix X as a pool of n examples,
from which a subset XA is selected for training a
least squares classifier, where A ∈ {1, 2 . . . n} denotes
a subset of indices. Under the usual assumptions on
the distribution of prediction errors (zero mean, equal
variance σ2), it is well known that the trained least
squares model has an estimation error with zero mean
and covariance matrix H(A) = σ2(XT

AXA)−1. The
goal of experimental design methods is to select the
optimal subset A of a pre-determined number of data
points, that “minimizes” H in some sense: D-optimal
design minimizes logdet(H(A)), E-optimal design min-
imizes ‖H(A)‖2

fro and A-optimal design minimizes
trace(H(A)). (Yu et al., 2006) discuss the notion
of Transductive Experimental design which instead fo-
cuses on minimizing the variance in predictions over
a given set of unlabeled examples, which is of more
direct interest. This method often outperforms un-
certainty sampling in traditional active learning tasks.
Moreover, (Yu et al., 2006) outline a kernelized version
which can be immediately applied to our active dual
supervision setting.

Given the (n+d)×(n+d) bipartite graph kernel K, let
E = {1, . . . , n} denote the indices of documents and
F = {n+1, . . . , n+d} denote the indices of words. Sup-
pose we picked a subset of examples and features in-
dexed by A ⊂ E∪F , trained a (kernelized) regularized
least squares model (with regularization parameter
µ) and made predictions on the document collection.
Then, the predictive error has a covariance matrix,
H(A) = 1

µ

[

KEE − KEA(KAA + µI)−1KAE

]

. To se-
lect features for labeling based on the transductive ex-
periment design criterion, we minimize trace(H(A))
over A ⊂ F , while for selecting examples, the mini-
mization is done over A ⊂ E. We used a simple ma-
trix deflation procedure proposed in (Yu et al., 2006)
to greedily minimizeH(A) over appropriate sets. Intu-
itively, H(A) measures how well the span of documents
and/or words in A represents the entire document col-
lection in the semantic feature space associated with
the kernel K. It is worthwhile to note that the ob-
jective function, H(A), is independent of the labels
of XA. Hence, unlike uncertainty-based schemes that
score candidates based on the current model, exam-
ples and features in this case can be ranked for query-
ing prior to any training. Note that on some tasks,
however, label dependence may be desirable.

3.2. Probabilistic Interleaving

An ideal active dual supervision scheme should be
able to gauge the value of acquiring labels for exam-
ples and features on the same scale. In addition, it
should be able to incorporate differences in domain-
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dependent acquisition costs and asymptotic limits of
oracle knowledge for the two different forms of supervi-
sion. In our uncertainty-inspired scheme, we use differ-
ent scores: uncertainty for examples and certainty for
features respectively. Similarly, in transductive experi-
mental design, the objective function measures the net
predictive variance in predictions over the set of exam-
ples not including features. Thus, these scores are not
on the same scale. Moreover, in their original form,
these schemes are also not cost-sensitive. One way to
attempt to align scalings and incorporate costs is by
estimating the cost-sensitive expected improvement in
the model accuracy for each possible outcome of each
possible feature and example label acquisition. Such
an expected utility approach has been successfully ap-
plied to traditional active learning in selecting exam-
ples (Roy & McCallum, 2001), and in active feature-
value acquisition (Melville et al., 2005). However, ap-
plying such an approach to GRADS is computationally
very intense, and is fraught with difficult estimations
and approximations necessary for the computation of
expected utility, particularly in the absence of labeled
validation data.

Instead, in this paper, we experiment with fast and
simple interleaving schemes where the active learner
probabilistically queries the example oracle or the
word oracle based on an interleave probability. These
schemes allow us to clearly demonstrate the value of
active dual supervision, which is the primary con-
tribution of this paper. We benchmark two such
schemes: (1) interleaving example uncertainty and fea-
ture certainty and (2) interleaving examples and fea-
tures ranked by transductive experimental design. We
study accuracy versus cost tradeoff as a function of the
interleave probability. Results in section 4.2 confirm
that active dual supervision can often be much more
cost effective than one-sided active learning.

4. Empirical Study

We begin our study with feature-side active learning
since it impacts choices for active dual supervision, and
has not been explored before. In sub-section 4.1, we
compare the relative performance of various schemes
for feature label acquisitions. In sub-section 4.2, we
explore the performance of probabilistic interleaving
schemes for active dual supervision.

The experimental setting is different from the setup
in sub-section 2.2. To make it computationally fea-
sible to run variance-based active learning schemes,
we selected the top 1500 features in each dataset us-
ing document frequency, and used the tfidf feature
vector representation. Results are averaged over 10

random training-test splits as before. For each split,
the feature-label oracle was set to label the top 100
most relevant words based on information gain com-
puted on the training set. For each run, all methods
are initialized by a random choice of 6 feature labels.
Test sets were completely held out and predictions on
it were made using Eqn 2. The active learning ses-
sion comprised of a fixed total number of queries –
200 queries for all datasets except movies where we
experimented with 400. During this session, the ac-
curacy of GRADS on the the test set was monitored
after each label acquisition. We used p = 1 for med-

space and financial-healthcare, and p = 5 for other
datasets based on results from sub-section 2.2, without
any additional tuning.

4.1. Feature-side Active Learning

Figure 4.1 shows active learning curves for uncertainty,
certainty, random, and variance-based (transductive
experimental design) schemes on 4 datasets (we omit
med-space for lack of space; it behaves similar to other
20-newsgroups datasets.). We also show the perfor-
mance of the model when all the oracle words are fully
revealed in the order of information gain. The learning
curves marked “oracle” in Figure 4.1 therefore give an
upper-bound on the expected performance.
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Figure 2. Feature-side Active Learning

We make the following observations.

• Feature-side active learning is generally very effec-
tive. On most datasets, by the end of one or the
other form of feature-side active learning session,
GRADS accuracy comes within 1% of what it can
potentially achieve with all oracle word labels.
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• Feature uncertainty performs significantly worse
than feature certainty, and very often worse than
random sampling. This is because uncertainty
sampling is strongly biased towards extracting
dont-know responses from the oracle. Table 2
shows the percentage of oracle words retrieved by
the end of the session. It is clear that uncertainty
tends to extract fewer word labels than random
sampling. As Table 2 shows, certainty sampling
has very high oracle response rates. Thus, this as-
pect significantly distinguishes feature-side active
learning from traditional example-side active learn-
ing. These results support the idea of combining
example uncertainty with feature certainty for ac-
tive dual supervision.

Table 2. Percentage of total oracle words retrieved for ran-
dom (rand), variance-based (var), uncertainty (unc) and
certainty (cert) sampling respectively in 200 queries (400
for movies).

Dataset rand var unc cert

movies 25.2 13.6 6.9 81.0
ibm-mac 13.2 26.3 2.1 66.6

baseball-hockey 13.5 28.1 1.2 58.2
med-space 11.5 35.3 1.3 69.6

financial-healthcare 13.1 34.3 4.2 60.8

• Querying features based on predictive variance
(transductive experimental design) is surprisingly
effective on 20-newsgroups datasets. Even though
this scheme has lower oracle response rates than
certainty sampling (see Table 2), the quality of
words picked for labeling appears to be signifi-
cantly better on these datasets. To the best of
our knowledge, this is the first demonstration of
the utility of experiment design notions for acquir-
ing feature-side “experiments”. On the other hand,
on movies the variance scheme performs worse than
random. We believe that this is due to the label-
independent aspect of transductive experimental
design. Many non-polar topical words (e.g., “ac-
tion”, “drama”) are picked that do not associate
strongly with sentiment classes.

4.2. Experiments in Active Dual Supervision

In this section, we benchmark active dual supervision
schemes based on probabilistic interleaving between
example uncertainty and feature certainty. Similar ob-
servations (not reported here for lack of space) hold
for interleaving examples and features based on trans-
ductive experimental design. The interleave proba-
bility is varied from 0 to 1 spanning the range from
pure feature-based active learning (based on feature
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Figure 3. Active dual supervision: Accuracy (solid blue
line with y-axis on the left) and Cost (dashed green line
with y-axis on the right) as a function of interleave proba-
bility.

certainty scores) to pure example-based active learn-
ing (based on example uncertainty scores). We as-
sume that these two forms of supervision incur dif-
ferent costs. For simplicity, we use the cost model
suggested in (Raghavan et al., 2007; Druck et al.,
2008) where features are roughly 5 times cheaper (i.e.,
faster to label) than examples. Figure 3 shows, as
a function of interleave probability, the total cost in-
curred (right y-axis) in acquiring labels, assuming unit
cost for example labels and 0.2 for feature labels,
and the resulting accuracy (left y-axis) returned by
GRADS when the active learning session culminates.
We omit the plot for financial-healthcare which quali-
tatively behaves similar to med-space. From Figure 3,
it is clear that, in general, the best performing model
is obtained by allowing the active learner to be able
to query for both forms of supervision. For example,
in movies, the accuracy peaks at an interleave prob-
ability of 0.8 producing a model better than the one
returned by example-only active learning (i.e., when
interleave probability = 1.0) or by feature-only ac-
tive learning (i.e., when interleave probability = 0.0).
The effectiveness of interleaving and the optimal in-
terleave probability depends on the dataset. On some
datasets (med-space, financial-healthcare) the situation
is ideal: pure feature-side active learning returns the
best model which also happens to be the cheapest. On
other datasets (ibm-mac, baseball-hockey) the cost bur-
den of example-side active learning with GRADS can
be significantly lessened by interleaving with feature
label requests, yielding an equally accurate model. For
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example, on baseball-hockey, interleaving feature label
requests 40% of the time (i.e., interleave probability
0.6) gives a model – at a cost of around 130 – that is
as accurate as the one where all queries are example-
label requests (interleave probability 1.0) costing 200
instead. For the same cost range, standard uncertainty
sampling with a standard supervised model (regular-
ized least squares classifier) gives accuracies ranging
from 0.664 to 0.726 for movies, 0.778 to 0.839 for ibm-

mac, 0.886 to 0.947 for med-space, and 0.89 to 0.942
for baseball-hockey. Overall, as Figure 3 shows, active
dual supervision with GRADS provides a substantially
better accuracy-cost tradeoff. Collectively, these re-
sults confirm the potential of active dual supervision.

5. Related Work

Dual supervision is a relatively new area of research.
Our methods are motivated by (Sindhwani et al., 2008;
Sindhwani & Melville, 2008). In this paper, we com-
pared our base model with that of Druck et al. (2008)
who apply a Generalized Expectation criteria to learn
a multinomial logistic regression model from labeled
features. See references in these papers on prior work
on incorporating labeled features via labeled pseudo-

examples. Recently, (Melville et al., 2009) proposed a
classifier for dual supervision based on Pooling Multi-
nomials. Active learning with this classifier has also
very recently been explored in (Melville & Sindhwani,
2009) although to the best of our knowledge, there is
very little prior work (Raghavan et al., 2007; Godbole
et al., 2004) on active learning with feature supervi-
sion. In particular, notions from classical experiment
design have never previously been explored in this con-
text.

6. Conclusion

In this paper, we developed active learning schemes for
dual supervision. Extensive empirical results demon-
strate how feature-side active learning and the simul-
taneous selection of features and examples as queries
can reduce the cost of building a high-accuracy model.
Developing multi-dimensional active learning schemes
that can seamlessly interleave between different forms
of supervision, take associated label acquisition costs,
annotation quality and other oracle properties into ac-
count, is a broad topic for future research.
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