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Abstract

Given their pervasive use, social media, such as Twitter, have become a leading
source of breaking news. A key task in the automated identification of such news
is the detection of novel documents from a voluminous stream of text documents
in a scalable manner. Motivated by this challenge, we introduce the problem of
online /;-dictionary learning where unlike traditional dictionary learning, which
uses squared loss, the ¢;-penalty is used for measuring the reconstruction error.
We present an efficient online algorithm for this problem based on alternating
directions method of multipliers, and establish a sublinear regret bound for this
algorithm. Empirical results on news-stream and Twitter data, shows that this
online /;-dictionary learning algorithm for novel document detection gives more
than an order of magnitude speedup over the previously known batch algorithm,
without any significant loss in quality of results. Our algorithm for online ¢;-
dictionary learning could be of independent interest.

1 Introduction

The high volume and velocity of social media, such as blogs and Twitter, have propelled them to
the forefront as sources of breaking news. On Twitter, it is possible to find the latest updates on
diverse topics, from natural disasters to celebrity deaths; and identifying such emerging topics has
many practical applications, such as in marketing, disease control, and national security [17]. The
key challenge in automatic detection of breaking news, is being able to detect novel documents in
a stream of text; where a document is considered novel if it is “unlike” documents seen in the past.
Recently, this has been made possible by dictionary learning, which has emerged as a powerful data
representation framework. In dictionary learning each data point y is represented as a sparse linear
combination Ax of dictionary atoms, where A is the dictionary and x is a sparse vector [1, 15]. A
dictionary learning approach can be easily converted into a novel document detection method: let A
be a dictionary representing all documents till time ¢ — 1, for a new data document y arriving at time
t, if one does not find a sparse combination x of the dictionary atoms, and the best reconstruction
Ax yields a large loss, then y clearly is not well represented by the dictionary A, and is hence novel
compared to documents in the past. At the end of timestep ¢, the dictionary is updated to represent
all the documents till time ¢.



Kasiviswanathan et al. [13] presented such a (batch) dictionary learning approach for detecting novel
documents/topics. They used an ¢;-penalty on the reconstruction error (instead of squared loss com-
monly used in the dictionary learning literature) as the ¢; -penalty has been found to be more effective
for text analysis (see Section 3). They also showed this approach outperforms other techniques, such
as a nearest-neighbor approach popular in the related area of First Story Detection [19]. We build
upon this work, by proposing an efficient algorithm for online dictionary learning with ¢;-penalty.
Our online dictionary learning algorithm is based on the online alternating directions method intro-
duced by Wang et al. [23] to solve online composite optimization problems with additional linear
equality constraints. Traditional online convex optimization methods such as [29, 10, 6, 7, 26] re-
quire explicit computation of the subgradient making them computationally expensive to be applied
in our high volume text setting, whereas in our algorithm the subgradients are computed implicitly.
The algorithm has simple closed form updates for all steps yielding a fast and scalable algorithm
for updating the dictionary. Under suitable assumptions (to cope with the non-convexity of the
dictionary learning problem), we establish an O(\/T ) regret bound for the objective, matching the
regret bounds of existing methods [29, 6, 7, 26]. Using this online algorithm for ¢; -dictionary learn-
ing, we obtain an online algorithm for novel document detection, which we empirically validate
on traditional news-streams as well as streaming data from Twitter. Experimental results show a
substantial speedup over the batch ¢ -dictionary learning based approach of Kasiviswanathan er al.
[13], without a loss of performance in detecting novel documents.

Related Work. Online convex optimization is an area of active research and for a detailed survey
on the literature we refer the reader to [21]. Online dictionary learning was recently introduced
by Mairal et al. [15] who showed that it provides a scalable approach for handling large dynamic
datasets. They considered an /5-penalty and showed that their online algorithm converges to the
minimum objective value in the stochastic case. However, the ideas proposed in [15] do not translate
to the ¢1-penalty. The problem of novel document/topics detection was also addressed by a recent
work of Saha ef al. [20], where they proposed a non-negative matrix factorization based approach for
capturing evolving and novel topics. However, their algorithm operates over a sliding time window
(does not have online regret guarantees) and works only for ¢5-penalty.

2 Preliminaries

Notation. Vectors are always column vectors and are denoted by boldface letters. For a matrix Z
its norm, || Z|y = 37, ; |zij| and || Z||3 = 3=, 27;. For arbitrary real matrices the standard inner

product is defined as <Y Z) = Tr(YTZ). We use U4, (Z) to denote the largest eigenvalue of
Z " Z. For a scalar r € R, let soft(r, T) = sign(r) - max{|r| — T,0}. The operators sign and soft
are extended to a matrix by applying it to every entry in the matrix. 0,,x., denotes a matrix of all
zeros of size m X n and the subscript is omitted when the dimension of the represented matrix is
clear from the context.

Dictionary Learning Background. Dictionary learning is the problem of estimating a collection
of basis vectors over which a given data collection can be accurately reconstructed, often with sparse
encodings. It falls into a general category of techniques known as matrix factorization. Classic dic-
tionary learning techniques for sparse representation (see [1, 18, 15] and references therein) consider
a finite training set of signals P = [py,...,ps] € R™*™ and optimize the empirical cost function
which is defined as f(A4) = Y., I(p;, A), where [(-, -) is a loss function such that [(p;, A) should
be small if A is “good” at representing the signal p; in a sparse fashion. Here, A € R™*¥ is referred
to as the dictionary. In this paper, we use a /;-loss function with an ¢, -regularization term, and our
I(pi, A) = ming ||p; — Ax|j1 + A||x||1, where X is the regularization parameter. We define the
problem of dictionary learning as that of minimizing the empirical cost f(A). In other words, the
dictionary learning is the following optimization problem

mgnf( )= f(AX Z pi, A) = min P — AX |1 4+ M| X1 (1)

For maintaining interpretability of the results, we would additionally require that the A and X ma-
trices be non-negative. We also add scaling constraints on A. The optimization problem (1) is in
general non-convex. But if one of the variables, either A or X is known, the objective function with
respect to the other variable becomes a convex function (in fact, a linear function).



3 Novel Document Detection Using Dictionary Learning

In this section, we describe the problem of novel document detection and explain how dictionary
learning could be used to tackle this problem. Our problem setup is similar to [13].

Novel Document Detection Task. We assume documents arrive in streams. Let {P; : P, €
R™#xmt ¢ =1,2,3,...} denote a sequence of streaming matrices where each column of P; repre-
sents a document arriving at time t. Here, P, represents the term-document matrix observed at time
t. Each document is represented is some conventional vector space model such as TF-IDF [16].
The ¢ could be at any granularity, e.g., it could be the day that the document arrives. We use n; to
represent the number of documents arriving at time ¢. We normalize P; such that each column (doc-
ument) in P; has a unit ¢;-norm. For simplicity in exposition, we will assume that m; = m for all
t! We use the notation Py to denote the term-document matrix obtained by vertically concatenating
the matrices P, ..., P, i.e., Py = [P1|P2|...|P]. Let Ny be the number of documents arriving at

time < ¢, then P € R™*Nt Under this setup, the goal of novel document detection is to identify
documents in P; that are “dissimilar” to the documents in Pj;_yj.

Sparse Coding to Detect Novel Documents. Let A; € R™** represent the dictionary matrix after
time ¢ — 1; where dictionary A; is a good basis to represent of all the documents in P;_1;. The exact
construction of the dictionary is described later. Now, consider a document y € R™ appearing at
time ¢. We say that it admits a sparse representation over Ay, if y could be “well” approximated as
a linear combination of few columns from A;. Modeling a vector with such a sparse decomposition
is known as sparse coding. In most practical situations it may not be possible to represent y as A;x,
e.g., if y has new words which are absent in A;. In such cases, one could representy = A;x + e
where e is an unknown noise vector. We consider the following sparse coding formulation

[y, Ar) = min [y — Al + Allx]s. @)

The formulation (2) naturally takes into account both the reconstruction error (with the ||y — A:x||1
term) and the complexity of the sparse decomposition (with the [|x||; term). It is quite easy to
transform (2) into a linear program. Hence, it can be solved using a variety of methods. In our
experiments, we use the alternating directions method of multipliers (ADMM) [3] to solve (2) (more
details in Appendix A, supplementary material).

We can use sparse coding to detect novel documents as follows. For each document y arriving at
time ¢, we do the following. First, we solve (2) to check whether y could be well approximated as a
sparse linear combination of the atoms of A;. If the objective value I(y, A;) is “big” then we mark
the document as novel, otherwise we mark the document as non-novel. Since, we have normalized
all documents in P; to unit ¢ -length, the objective values are in the same scale.

Choice of the Error Function. A very common choice of reconstruction error is the {2-penalty.
In fact, in the presence of isotopic Gaussian noise the /5-penalty on e = y — A;x gives the best
approximation of x [25, 27]. However, for text documents, the noise vector e rarely satisfies the
Gaussian assumption, as some of its coefficients contain large, impulsive values. For example, in
fields such as politics and sports, a certain term may become suddenly dominant in a discussion [13].
In presence of non-smooth noise the ¢>-penalty on the reconstruction error may give an extremely
bad approximation of x [27]. Our ¢;-formulation is inspired by recent results [25, 28, 24] showing
that imposing an ¢;-penalty gives a more robust and better approximation of x when the data may
contain large, impulsive noise. Additionally, [28] have shown that even without impulsive noise the
£1-penalty does not harm the solution quality as long as the data does not contain a large amount of
Gaussian noise. We empirically validate the superiority of using ¢;-penalty in Section 5.

Size of the Dictionary. Ideally, in our application setting, changing the size of the dictionary (k)
dynamically with ¢ would lead to a more efficient and effective sparse coding. However, in our
theoretical analysis, we make the simplifying assumption that k is a constant independent of ¢. In
our experiments, we allow for small increases in the size of the dictionary over time when required.

'As new documents come in and new terms are identified, we expand the vocabulary and zero-pad the
previous matrices so that at the current time ¢, all previous and current documents have a representation over
the same vocabulary space.



3.1 Batch Algorithm for Novel Document Detection

In this section, we describe a simple batch algorithm (slightly modified from [13]) for detecting
novel documents. The Algorithm BATCH alternates between a novel document detection and a
batch dictionary learning step. Let A be the convex set of matrices defined as

A={AcR™F* © A> 0, Vj=1,....k,|Aj|l1 <1}, where A; is the jth column in A.

We use IT 4 to denote the projection onto the nearest point in the convex set A.

Algorithm 1 : BATCH

Input: P,_1) € R™N=1 P, = [p1,...,pn,] €ER™ ™, A, e R™* X >0, >0
Novel Document Detection Step:
for j = 1ton; do

Solve: x; = argmin, 5 [[p; — Aex[l1 + Allxx

if [p; — Auxjl + Allxl[1 > ¢

Mark p; as novel

Batch Dictionary Learning Step:
Set P[t] — [P[t—l] | Pi,-. -, pnt}
Solve: [As11, X(g] = argmin 4 4 x50 [Py — AX1 + A X1

Batch Dictionary Learning. We now describe the batch dictionary learning step. Firstly, we require
the A’s and X’s to be non-negative for interpretability purposes. To prevent the dictionary from
having arbitrarily large values (which could lead to small values for X’s), we also require that
each column of the dictionary have a ¢1-norm less than or equal to 1. Adding this constraint, the
dictionary learning step becomes’

[Ap1, Xpg] = argminye 4 x>0 [Py — AX |1+ A X1 )

Even though conceptually simple, Algorithm BATCH is computationally inefficient. The bottleneck
comes in the dictionary learning step. As ¢ increases, so does the size of P, so solving (3) becomes
prohibitive even with efficient optimization techniques. To achieve computational efficiency, in [13],
the authors solved an approximation of (3) where in the dictionary learning step they only update
the A’s and not the X’s? This leads to faster running times, but because of the approximation, the
quality of the dictionary degrades over time and the performance of the algorithm decreases. In this
paper, we propose an online learning algorithm for (3) and show that this online algorithm is both
computationally efficient and generates good quality dictionaries under reasonable assumptions.

4 Online /;-Dictionary Learning

In this section, we introduce the online ¢; -dictionary learning problem and propose an efficient algo-
rithm for it. An online algorithm performs well if its regret is sublinear in time 7', since this implies
that “on the average” the algorithm performs as well as the best fixed strategy in hindsight [21]. Now
consider the /1 -dictionary learning problem defined in (3). Since this problem is jointly non-convex
in (A, X) it is not possible to obtain an efficient online algorithm with sublinear regret without
making any assumptions on either the dictionary (A) or the sparse codes (X) (because an online
algorithm with sublinear regret would imply an efficient algorithm for solving (3) in the batch case).
Therefore, we focus on obtaining regret bounds for the dictionary update, assuming that the at each
timestep the sparse codes given to the batch and online algorithms are “close”. This motivates the
following problem.

Definition 4.1 (Online ¢;-Dictionary Learning Problem). At time t, the online algorithm picks
Aiy1 € A based on (Py, Xy, At). Then, the nature (adversary) reveals (Piyq1, Xiq1) with
Py € R™™ and X1 € R¥*™. The problem is to pick the Ay, sequence such that the fol-

In our algorithms, it is quite straightforward to replace the condition A € A by some other condition
A € C, where C is some closed non-empty convex set.

3In particular, define (recursively) X 1] = [Xp—1|x1,...,%n,] where x;’s are coming from the novel
document detection step at time ¢. In [13], the dictionary learning step is A;y1 = argmin , 4 || Py — AX[y |1



lowing regret function is minimized"*
T T
Z”Pt AtXtHl—mln Z”Pt AXt”l 5

t=1

where X} = X + E,; and E; is an error matrix dependent on t.

Different from the conventional definition of regret in the online learning, the regret defined above
admits the discrepancy between the sparse coding matrices supplied to the batch and online algo-
rithms through the error matrix. The reason for this generality is because in our application setting,
the sparse coding matrices used for updating the dictionaries of the batch and online algorithms
could be different. We will later establish the conditions needed on F;’s to achieve sublinear regret.

4.1 Online ¢;-Dictionary Algorithm

In this section, we design an algorithm for the online ¢;-dictionary learning problem, which we
call Online Inexact ADMM (OIADMM), and bound its regret. Firstly note that because of the
non-smooth ¢ -norms involved it is computationally expensive to apply standard online learning al-
gorithms like online (stochastic) gradient descent [29, 10], COMID [7], FOBOS [6], and RDA [26],
as they require computing a costly subgradient at every iteration. We propose a variant of the online
alternating direction method, which was first proposed by Wang et al. [23]. In the proposed method,
we first perform a simple variable substitution by introducing an equality constraint. The update for
each variable has a closed-form solution without the need of estimating the subgradients explicitly.
Furthermore, each update amounts to a simple element-wise operation and can be done in parallel
resulting in a highly scalable algorithm.

Algorithm 2 : OTADMM

Input: P, € R™*™, A, ¢ R™**, A, € R™*", X, ¢ RF*™, 8, > 0,7 > 0

ft <— Pt AtXt . ~

['iy1 = argming [Tl + (A, Ty = T) + (Be/2)IITe — T3 (= Dig1 = soft(l's + A¢/Be, 1/Bt))
Gt+1 — —(A¢/Be +Pt FtJrl)Xt . ) )

Agyy = argming, 4 Be((Getr, A= A+ (1/2m)|A= A} ) (= Avgr = Ta(max{0, A, —7:Gi11}))
JAVER] IAAt + Be(Pr — At+1Xt Tig1)

Return At+1 and At+1

The Algorithm OIADMM is simple: at each time ¢ it uses the minimization problem minsc 4 || P—
AX¢|; to get Ayyq1. We can rewrite this above minimization problem as:

Amm IT|ly st P —AX,=T. 4)

The augmented Lagrangian of (4) is:

£(A7F7At) = Al’éli{ll_\ ||FH1 <At, t AXt — F> + é

P, — AX, — FH

where A; € R™*" is a multiplier and 5, > 0 is a penalty parameter.

OIADMM is summarized in Algorithm 2. It is based on updating the variables I', A, and A;.
Instead of solving (4) completely, at each time ¢ it only runs one step ADMM update of the variables.

OIADMM gets as input P, Xt, At, and A;. It outputs At+1 and Ayyg.

Let Ty = P, — A, X,. First for a fixed A = A, and A,, T that minimizes (5) could be obtained by
solving argming. [|T||; + (A¢, Ty — T) + (B:/2)||T'+ — T||%. The T that minimizes this optimization
problem is set as I';; 1. Now using fixed I' = I';1; and A, a simple manipulation shows that we
can obtain the A that minimizes (5) by solving

2

Ay
B

“For ease of presentation and analysis, we will assume that m and n don’t vary with time. One could allow
for changing m and n by carefully adjusting the size of the matrices by zero-padding.

— AX; — T + (6)

. t
min — .
AcA 2 P




Instead of solving (6) exactly, we approximate it by minae 4 8:((Giy1, A — flt) +1/2m)||A -
At”%), where 7 > 0 is a proximal parameter and G is the gradient of ||P; — AX, — Tiq +
At/Bi]|% at A = A,. The above approach belongs to the class of proximal gradient methods in
optimization [22, 28]. The A that minimizes this optimization problem is set as fltH. Now that we
have obtained I';;; and At.}rl, we update A as Ay = Ay + B¢ (P — At+1Xt —T11).

Equality Constraint Violation. OITADMM could temporary violate the equality constraint in (4),
but satisfies the constraint on average in the long run. More formally, at each time ¢ it could hap-
pen that fltH and I';y; produced by OIADMM is such that P, — fltHX} # T'y41. However,

we show that the algorithm has the property that Zle ITsr1 — Py + Ayy 1 Xy||2 is sublinear in
T (Theorem B.6, supplementary material), which implies that over time, on average, the equality
constraint (4) gets satisfied.

Regret Analysis of OIADMM. We present the main result in the following theorem. The complete
analysis is presented in the Appendix B of the supplementary material.

Theorem 4.2. Let {T';, Ay, Ay} be the sequences generated by the OIADMM procedure and R(T')
be defined as above. Assume the following conditions hold: (i) the Frobenius norm of 0||T¢||1
is upper bounded by ®, (ii) Ay = Omxk, [[A°PY|r < D, (iii) Ag = Ouyxn, and (iv) 1/7y >
2 o (Xy). Setting B; = (®/D)/7¢T, we have

dDVT opt
< evm) +Z||A Exlf1.

Condition on F;’s for Sublinear Regret. In a standard online learning setting, the (P, Xt) made
available to the online learning algorithm will be the same as (P;, X;) made available to the batch

dictionary learning algorithm in hindsight, so that X, =X, > E =0, yielding a O(ﬁ ) regret.
More generally, as long as Zf,T:1 | Et|l, = o(T') for some suitable ¢, norm, we get a sublinear regret

bound? For example, if {Z;} is a sequence of random matrices such that for all ¢, || Z;||, = O(1)
holds with high probability, setting F; = t~¢Z;, ¢ > 0 yields a sublinear regret with high probability.
We defer a more detailed discussion on this topic to the full version of this paper.

R(T) <

Efficiency and Extensions. For each column 7 in the dictionary matrix this projection onto .4 can
be done in O(s; log m) time where s; is the number of non-zero elements in the ith column using the
projection onto ¢1-ball algorithm of Duchi et al. [5]. The simplest implementation of OTADMM
takes O(mnk) time at each timestep because of the matrix multiplications involved. However,
in practice, we can exploit the sparsities of the matrices to make the algorithm run much faster.

OIADMM is also memory efficient, as at each time ¢, it only need A;_1 from previous timesteps.

5 Experimental Results

In this section, we present experiments to compare and contrast the performance of ¢;-batch and
£1-online dictionary learning algorithms for the task of novel document detection. We also present
results highlighting the superiority of using an ¢;- over an ¢s-penalty on the reconstruction error for
this task (validating the discussion in Section 3).

Implementation of BATCH. In our implementation, we grow the dictionary size by 7 in each
timestep. Growing the dictionary size is essential for the batch algorithm because as ¢ increases the
number of columns of P, also increases, and therefore, a larger dictionary is required to compactly
represent all the documents in P;. For solving (3), we use alternative minimization over the vari-
ables. The complete pseudo-code is given in Algorithm BATCH-IMPL (Appendix C, supplementary
material). We use the ADMM technique to solve the optimization problems arising in the sparse
coding and dictionary learning steps (see Appendix A, supplementary material).

Online Algorithm for Novel Document Detection. Algorithm ONLINE® uses the same novel doc-
ument detection step as Algorithm BATCH, but dictionary learning is done using OTADMM.

3This follows from Holder’s inequality which shows that 23:1 |APCE, ||y < ||A°P* ||q(2:tT:1 |E¢||p) for
1<p,q<ooand1/p+1/q=1,and by the assuming || A°"*||, is bounded.

®In our experiments, the number of documents introduced in each timestep is almost of the same order, and
hence there is no need to change the size of the dictionary across timesteps for the Algorithm ONLINE.

"Before invoking Algorithm OTADMM we have to zero-pad the matrices in the arguments appropriately.



Algorithm 3 : ONLINE

Input: P, = [p1,...,pn,] € R™™, A, e R™F A, e R™™ A >0,(>0,>0,7>0
Novel Document Detection Step:
for j = 1ton; do

Solve: x; = argmin, ¢ [[p; — Aex[[1 + Allx[|1

if [p; — Aux;jl + Allx;l[1 > ¢

Mark p; as novel

Online Dictionary Learning Step:
Set X; «— [Xl, e ,X,,Lt}
(At+17 At+1) < OIADMM(Pt7 Ai: Ai7 Xt7 ﬂ7 T)7

Notice that the sparse coding matrices of the Algorithm BATCH, Xi,...,X; (where Xy =

[X1]...|X¢]) could be different from X1,..., X, If these sequence of matrices are close to each
8

other, then we have a sublinear regret on the objective function:
Evaluation of Novel Document Detection. For performance evaluation, we assume that documents
in the corpus have been manually identified with a set of topics. For simplicity, we assume that each
document is tagged with the single, most dominant topic that it associates with, which we call the
true topic of that document. We call a document y arriving at time ¢ novel if the true topic of
y has not appeared before the time ¢. So at time ¢, given a set of documents, the task of novel
document detection is to classify each document as either novel (positive) or non-novel (negative).
For evaluating this classification task, we use the standard Area Under the ROC Curve (AUC) [16].

Performance Evaluation for /; -Dictionary Learning. We use a simple reconstruction error mea-
sure for comparing the dictionaries produced by our ¢;-batch (Algorithm BATCH-IMPL) and /-
online (Algorithm ONLINE) algorithms. We want the dictionary at time ¢ to be a good basis to
represent all the documents in P € R™*Nt_ This leads us to define the sparse reconstruction
error (SRE) of a dictionary A at time ¢ as

def 1 .
RE(A) L (i 171y~ AX ]+ A

A dictionary with a smaller SRE is better on average at sparsely representing the documents in Pyy).

Novel Document Detection using />-dictionary learning. To justify the choice of using an ¢;-
penalty (on the reconstruction error) for novel document detection, we performed experiments com-
paring ¢1- vs. {o-penalty for this task. In the /-setting, for the sparse coding step we used a fast
implementation of the LARS algorithm with positivity constraints [8] and the dictionary learning
was done by solving a non-negative matrix factorization problem with additional sparsity constraints
(also known as the non-negative sparse coding problem [12]). A complete pseudo-code description
is given in Algorithm L2-BATCH (Appendix C, supplementary material®).

Experimental Setup. All reported results are based on a Matlab implementation running on a quad-
core 2.33 GHz Intel processor with 32GB RAM. The regularization parameter A is set to 0.1 which
yields reasonable sparsities in our experiments. OTADMM parameters 7; is set 1/ (2\I/max(Xt))
(chosen according to Theorem 4.2) and f; is fixed to 5 (obtained through tuning). The ADMM
parameters for sparse coding and batch dictionary learning are set as suggested in [13] (see Ap-
pendix A, supplementary material). In the batch algorithms, we grow the dictionary sizes by n = 10
in each timestep. The threshold values ( are treated as tunable parameters.

5.1 Experiments on News Streams

Our first dataset is drawn from the NIST Topic Detection and Tracking (TDT2) corpus which con-
sists of news stories in the first half of 1998. In our evaluation, we used a set of 9000 documents
represented over 19528 terms and distributed into the top 30 TDT2 human-labeled topics over a
period of 27 weeks. We introduce the documents in groups. At timestep 0, we introduce the first
1000 documents and these documents are used for initializing the dictionary. We use an alternative

8 As noted earlier, we can not do a comparison without making any assumptions.
“We used the SPAMS package http://spams—devel.gforge.inria. fr/ in our implementation.



minimization procedure over the variables of (1) to initialize the dictionary. In these experiments
the size of the initial dictionary k¥ = 200. In each subsequent timestep ¢ € {1,...,8}, we provide
the batch and online algorithms the same set of 1000 documents. In Figure 1, we present novel
document detection results for those timesteps where at least one novel document was introduced.
Table 1 shows the corresponding AUC numbers. The results show that using an ¢;-penalty on the
reconstruction error is better for novel document detection than using an ¢5-penalty.

Timestep 1 Timestep 2 Timestep 5 Timestep 6 Timestep 8

o 1 T o 1 , I e 1 = e 1 =
T o T ] s I
o o o o o
3 Qo <] [ [
2 2 2 = =
0.5 3 0.5 3 0.5 3 0.5
o o o j=] o
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0 05 1 0 05 1 0 05 1 0 0.5, 1 0 0.5,
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Figure 1: ROC curves for TDT?2 for timesteps where novel documents were introduced.

Timestep | No. of Novel Docs. | No. of Nonnovel Docs. | AUC {1-online | AUC {1-batch | AUC f2-batch
1 19 981 0.791 0.815 0.674
2 53 947 0.694 0.704 0.586
5 116 384 0.732 0.764 0.601
6 66 934 0.881 0.898 0.816
8 65 935 0.757 0.760 0.701
Avg. 0.771 0.788 0.676

Table 1: AUC Numbers for ROC Plots in Figure 1.

Comparison of the /;-online and /;-batch Algorithms. The /;-online (Algorithm ONLINE) and
£ -batch (Algorithm BATCH-IMPL) algorithms have almost identical performance in terms of detect-
ing novel documents (see Table 1). However, the online algorithm is much more computationally
efficient. In Figure 2(a), we compare the running times of these algorithms. As noted earlier, the
running time of the batch algorithm goes up as ¢ increases (as it has to optimize over the entire past).
However, the running time of the online algorithm is independent of the past and only depends on the
number of documents introduced in each timestep (which in this case is always 1000). Therefore,
the running time of the online algorithm is almost the same across different timesteps. As expected
the run-time gap between the ¢;-batch and ¢;-online algorithms widen as ¢ increases — in the first
timestep ONLINE is 5.4 times faster, and this rapidly increases to a factor of 11.5 in just 7 timesteps.

In Figure 2(b), we compare the dictionaries produced by the ¢;-batch and ¢;-online algorithms
under the SRE metric. In the first few timesteps, the SRE of the dictionaries produced by the online
algorithm is slightly lower than that of the batch algorithm. However, this gets corrected after a few
timesteps and as expected later on the batch algorithm produces better dictionaries.

I Sparse Reconstruction Error Plot for Twitter
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Figure 2: Running time and SRE plots for TDT2 and Twitter datasets.

5.2 Experiments on Twitter

Our second dataset is from an application of monitoring Twitter for Marketing and PR for smart-
phone and wireless providers. We used the Twitter Decahose to collect a 10% sample of all tweets



(posts) from Sept 15 to Oct 05, 2011. From this, we filtered the tweets relevant to “Smartphones”
using a scheme presented in [4] which utilizes the Wikipedia ontology to do the filtering. Our dataset
comprises of 127760 tweets over these 21 days and the vocabulary size is 6237 words. We used the
tweets from Sept 15 to 21 (34292 in number) to initialize the dictionaries. Subsequently, at each
timestep, we give as input to both the algorithms all the tweets from a given day (for a period of 14
days between Sept 22 to Oct 05). Since this dataset is unlabeled, we do a quantitative evaluation of
£1-batch vs. ¢;-online algorithms (in terms of SRE) and do a qualitative evaluation of the ¢;-online
algorithm for the novel document detection task. Here, the size of the intial dictionary & = 100.

Figure 2(c) shows the running times on the Twitter dataset. At first timestep the online algorithm is
already 10.8 times faster, and this speedup escalates to 18.2 by the 14th timestep. Figure 2(d) shows
the SRE of the dictionaries produced by these algorithms. In this case, the SRE of the dictionaries
produced by the batch algorithm is consistently better than that of the online algorithm, but as the
running time plots suggests this improvement comes at a very steep price.

Table 2 below shows a representative set of novel tweets identified by Algorithm ONLINE. Using a
completely automated process (explained in Appendix D, supplementary material), we are able to
detect breaking news and trending relevant to the smartphone market, such as AT&T throttling data
bandwidth, launch of IPhone 4S, and the death of Steve Jobs.

Date Sample Novel Tweets Detected Using Algorithm ONLINE
2011-09-26 Android powered 56 percent of smartphones sold in the last three months. Sad thing is it can’t lower the rating of ios!
2011-09-29 How Windows 8 is faster, lighter and more efficient: WP7 Droid Bionic Android 2.3.4 HP TouchPad white ipods_72
2011-10-03 U.S. News: AT&T begins sending throttling warnings to top data hogs: AT&T did away with its unlimited da... #iPhone
2011-10-04 Can’t wait for the iphone 4s #letstalkiphone
2011-10-05 Everybody put an iPhone up in the air one time #ripstevejobs

Table 2: Sample novel documents detected using Algorithm ONLINE and some post-processing.

6 Conclusion

The main contribution of this paper is a new online ¢;-dictionary learning algorithm, based on
which we develop a scalable approach to detecting novel documents in streams of text. We establish
a sublinear regret bound, and empirically demonstrate orders of magnitude speedup over the batch
algorithm, without much loss in performance. A further speedup can be achieved by distributing
the algorithm using known techniques [3]. Apart from the target application of novel document
detection, our online ¢; -dictionary learning algorithm could have broader applicability to other tasks
using text and beyond, e.g., signal processing [9]. On a different note, there are several techniques
that are related to dictionary learning, such as Latent Dirichlet Allocation [2], Probabilistic Latent
Semantic Analysis [11], and Non-negative Matrix Factorization [14], and adapting these techniques
for online detection of novel documents is a rich area for future work.
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