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Abstract

Query by Committee is an effective approach
to selective sampling in which disagreement
amongst an ensemble of hypotheses is used
to select data for labeling. Query by Bag-
ging and Query by Boosting are two prac-
tical implementations of this approach that
use Bagging and Boosting, respectively, to
build the committees. For effective active
learning, it is critical that the committee be
made up of consistent hypotheses that are
very different from each other. DECORATE
is a recently developed method that directly
constructs such diverse committees using ar-
tificial training data. This paper introduces
ACTIVE-DECORATE, which uses DECORATE
committees to select good training examples.
Extensive experimental results demonstrate
that, in general, ACTIVE-DECORATE outper-
forms both Query by Bagging and Query by
Boosting.

1. Introduction

The ability to actively select the most useful training
examples is an important approach to reducing the
amount of supervision required for effective learning.
In particular, pool-based sample selection, in which the
learner chooses the best instances for labeling from a
given set of unlabeled examples, is the most practi-
cal approach for problems in which unlabeled data is
relatively easily available (Cohn et al., 1994). A theo-
retically well-motivated approach to sample selection
is Query by Committee (Seung et al., 1992), in which
an ensemble of hypotheses is learned and examples
that cause maximum disagreement amongst this com-

mittee (with respect to the predicted categorization)
are selected as the most informative. Popular ensem-
ble learning algorithms, such as Bagging and Boost-
ing, have been used to efficiently learn effective com-
mittees for active learning (Abe & Mamitsuka, 1998).
Meta-learning ensemble algorithms, such as Bagging
and Boosting, that employ an arbitrary base classifier
are particularly useful since they are general purpose
and can be applied to improve any learner that is ef-
fective for a given domain.

An important property of a good ensemble for
committee-based active learning is diversity. Only a
committee of hypotheses that effectively samples the
version space of all consistent hypotheses is productive
for sample selection (Cohn et al., 1994). DECORATE
(Melville & Mooney, 2003) is a recently introduced
ensemble meta-learner that directly constructs diverse
committees by employing specially-constructed artifi-
cial training examples. Extensive experiments have
demonstrated that DECORATE constructs more accu-
rate ensembles than both Bagging and ADABOOST
when training data is limited.

This paper presents a new approach to active learning,
ACTIVE-DECORATE, which uses committees produced
by DECORATE to select examples for labeling. Exten-
sive experimental results on several real-world datasets
show that using this approach produces substantial im-
provement over using ADABOOST with random sam-
pling. ACTIVE-DECORATE requires far fewer examples
than ADABOOST, and on average also produces con-
siderable reductions in error. In general, our approach
also outperforms both Query by Bagging and Query
by Boosting.

2. Query by Committee

Query by Committee (QBC) is a very effective active
learning approach that has been successfully applied to
different classification problems (McCallum & Nigam,



1998; Dagan & Engelson, 1995; Liere & Tadepalli,
1997). A generalized outline of the QBC approach
is presented in Algorithm 1. Given a pool of unla-
beled examples, QBC iteratively selects examples to
be labeled for training. In each iteration, it generates
a committee of classifiers based on the current train-
ing set. Then it evaluates the potential utility of each
example in the unlabeled set, and selects a subset of
examples with the highest expected utility. The labels
for these examples are acquired and they are transfered
to the training set. Typically, the utility of an exam-
ple is determined by some measure of disagreement in
the committee about its predicted label. This process
is repeated until the number of available requests for
labels is exhausted.

Freund et al. (1997) showed that under certain as-
sumptions, Query by Committee can achieve an expo-
nential decrease in the number of examples required
to attain a particular level of accuracy, as compared
to random sampling. However, these theoretical re-
sults assume that Gibbs algorithm is used to generate
the committee of hypotheses used for sample selection.
The Gibbs algorithm for most interesting problems is
computationally intractable. To tackle this issue, Abe
and Mamitsuka (1998) proposed two variants of QBC,
Query by Bagging and Query by Boosting, where Bag-
ging and ADABOOST are used to construct the com-
mittees for sample selection. In their approach, they
evaluate the utility of candidate examples based on the
margin of the example; where the margin is defined as
the difference between the number of votes in the cur-
rent committee for the most popular class label, and
that for the second most popular label. Examples with
smaller margins are considered to have higher utility.

3. ACTIVE-DECORATE

It is beneficial in QBC to use an ensemble method
that builds a diverse committee, in which each hy-
pothesis is as different as possible, while still maintain-
ing consistency with the training data. DECORATE is
an ensemble method that explicitly focuses on creat-
ing ensembles that are diverse (Melville & Mooney,
2003; Melville & Mooney, 2004). A summary of the
DECORATE algorithm is provided in the following sub-
section. We propose a variant of Query by Commit-
tee, ACTIVE-DECORATE, that uses DECORATE to con-
struct committees for sample selection.

To evaluate the expected utility of unlabeled exam-
ples, we also used the margins on the examples, as
in Abe and Mamitsuka (1998). We generalized their
definition, to allow the base classifiers in the ensem-
ble to provide class probabilities, instead of just the

Algorithm 1 Generalized Query by Committee

Given:

T - set of training examples

U - set of unlabeled training examples
BaseLearn - base learning algorithm

k - number of selective sampling iterations
m - size of each sample

1. Repeat k times

2. Generate a committee of classifiers,
C* = EnsembleM ethod(BaseLearn,T)

3. Vz; € U, compute Utility(C*, z;), based
on the current committee

4. Select a subset S of m examples that
maximizes utility

5. Label examples in S

6. Remove examples in S from U and add
toT

7. Return EnsembleMethod(BaseLearn,T)

most likely class label. Given the class membership
probabilities predicted by the committee, the margin
is then defined as the difference between the highest
and second highest predicted probabilities.

3.1. DECORATE

This section summarizes the DECORATE algorithm; for
further details see (Melville & Mooney, 2003; Melville
& Mooney, 2004). The approach is motivated by the
fact that combining the outputs of multiple classifiers
is only useful if they disagree on some inputs (Krogh
& Vedelsby, 1995). We refer to the amount of dis-
agreement as the diversity of the ensemble, which we
measure as the probability that a random ensemble
member’s prediction on a random example will dis-
agree with the prediction of the complete ensemble.

DECORATE was designed to use additional artificially-
generated training data in order to generate highly di-
verse ensembles. An ensemble is generated iteratively,
learning one new classifier at each iteration and adding
it to the current ensemble. The ensemble is initialized
with the classifier trained on the given data. The clas-
sifiers in each successive iteration are trained on the
original data and also on some artificial data. In each
iteration, a specified number of artificial training ex-
amples are generated based on a simple model of the
data distribution. The category labels for these arti-
ficially generated training examples are chosen so as
to differ maximally from the current ensemble’s pre-
dictions. We refer to this artificial training set as the



diversity data. We train a new classifier on the union
of the original training data and the diversity data. If
adding this new classifier to the current ensemble in-
creases the ensemble training error, then this classifier
is rejected, else it is added to the current ensemble.
This process it repeated until the desired committee
size is reached or a maximum number of iterations is
exceeded.

The artificial data is constructed by randomly gener-
ating examples using an approximation of the train-
ing data distribution. For numeric attributes, a Gaus-
sian distribution is determined by estimating the mean
and standard deviation of the training set. For nom-
inal attributes, the probability of occurrence of each
distinct value is determined using Laplace estimates
from the training data. Examples are then generated
by randomly picking values for each feature based on
these distributions, assuming attribute independence.
In each iteration, the artificially generated examples
are labeled based on the current ensemble. Given an
example, we compute the class membership probabili-
ties predicted by the current ensemble, replacing zero
probabilities with a small € for smoothing. Labels
are then sampled from this distribution, such that the
probability of selecting a label is inversely proportional
to the current ensemble’s predictions.

4. Experimental Evaluation
4.1. Methodology

To evaluate the performance of ACTIVE-DECORATE,
we ran experiments on 15 representative data sets from
the UCI repository (Blake & Merz, 1998). We com-
pared the performance of ACTIVE-DECORATE with
that of Query by Bagging (QBag), Query by Boost-
ing (QBoost) and ADABOOST, all using an ensemble
size of 15. J48 decision-tree induction, the Weka (Wit-
ten & Frank, 1999) implementation of C4.5 (Quinlan,
1993), was used as the base learner for all methods.
We also used the Weka version of ADABOOST.

The performance of each algorithm was averaged over
two runs of 10-fold cross-validation. In each fold of
cross-validation, we generated learning curves in the
following fashion. The set of available training exam-
ples was treated as an unlabeled pool of examples, and
at each iteration the active learner selected a sample
of points to be labeled and added to the training set.
For ADABOOST, the examples in each iteration were
selected randomly. The resulting curves evaluate how
well an active learner orders the set of available ex-
amples in terms of utility. At the end of the learning
curve, all algorithms see exactly the same training ex-

amples.

To maximize the gains of active learning, it is best
to acquire a single example in each iteration. How-
ever to make our experiments computationally feasi-
ble, we choose larger sample sizes for the bigger data
sets. In particular, we used a sample size of two for
the primary dataset, and three for breast-w, soybean,
diabetes, vowel and credit-g.

The primary aim of active learning is to reduce the
amount of training data needed to induce an accurate
model. To evaluate this, we first define the target error
rate as the lowest error that ADABOOST can achieve
on a given dataset, as determined by its error rate
averged over the last 5 points on the learning curve.
We then record the smallest number of examples re-
quired by a learner to achieve the same or lower error.
We define the data utilization ratio, as the number of
examples an active learner requires to reach the target
error rate divided by the number ADABOOST requires.
This metric reflects how efficiently the active learner
is using the data and is similar to a measure used by
Abe and Mamitsuka (1998).

Another metric for evaluating an active learner is
how much it improves accuracy over random sampling
given a fixed amount of labeled data. Therefore, we
also compute the percentage reduction in error over
ADABOOST and report the average over all points on
the learning curve. As mentioned above, towards the
end of the learning curve, all methods will have seen
almost all the same examples. Hence, the main im-
pact of active learning is lower on the learning curve.
To capture this, we also report the percentage error
reduction averaged over only the 20% of points on the
learning curve, where the largest improvements are
produced. This is similar to a measure reported by
Saar-Tsechansky and Provost (2001).

4.2. Results

The data utilization of the different active learners
with respect to ADABOOST is summarized in Table 1.
We present the number of examples required for each
system to achieve the target error rate and, in paren-
theses, the data utilization ratio. The smallest num-
ber of examples needed for each dataset is presented in
bold font. On one dataset, lymph, ACTIVE-DECORATE
requires a few more examples than ADAB0OST. This
is an anomalous dataset where none of the active learn-
ers provide a benefit. On all other datasets, ACTIVE-
DECORATE produces substantial improvements over
ADABOOST in terms of data utilization. Furthermore,
ACTIVE-DECORATE outperforms both the other active
learners on 10 of the datasets. On vowel, QBag was



Table 1. Data utilization with respect to AdaBoost

Dataset Total Size AdaBoost Qbag Qboost  ActiveDecorate Target Error (%)
breast-w 620 165(1.00)  45(0.27)  72(0.44) 39(0.24) 113
soybean 615  480(1.00)  249(0.52)  219(0.46) 129(0.27) 7.00
statlog 243 88(1.00)  82(0.93)  61(0.69) 27(0.31) 19.63
iris 135 97(1.00) 32(0.33) 77(0.79) 30(0.31) 6.07
labor 51 45(1.00) 26(0.58) 19(0.42) 15(0.33) 13.37
heart-h 265  114(1.00)  29(0.25)  47(0.41) 39(0.34) 20.05
hepatitis 140 49(1.00)  30(0.61)  43(0.88) 23(0.47) 16.88
primary 305  274(1.00)  146(0.53)  216(0.79) 130(0.47) 58.98
vowel 810  852(1.00) - 636(0.75) 414(0.49) 5.89
sonar 187  151(1.00  186(1.23)  131(0.87) 99(0.66) 18.25
diabetes 691  120(1.00) 51(0.42)  75(0.62) 93(0.78) 27.45
heart-c 273 46(1.00)  56(1.22)  41(0.89) 36(0.78) 21.55
glass 193 158(1.00) 138(0.87) 109(0.69) 128(0.81) 23.92
credit-g 900  396(1.00) 192(0.48)  228(0.58) 363(0.92) 27.23
lymph 133 40(1.00)  70(1.75)  51(1.27) 44(1.10) 18.80
No. of Wins 1 3 1 10

Table 2. Percent error reduction over AdaBoost

Dataset Qbag Qboost ActiveDecorate
breast-w 3.93 6.49 9.94
soybean 8.04 16.81 26.82
statlog 4.91 3.42 6.65
iris 18.67 6.50 24.58
labor -0.84 8.95 30.49
heart-h 9.84 6.88 6.51
hepatitis -1.31 1.64 6.27
primary 5.10 1.10 5.66
vowel -6.29 20.21 32.67
sonar 0.19 3.04 12.45
diabetes 8.59 2.60 6.15
heart-c 2.77 5.98 1.60
glass -0.86 5.83 7.20
credit-g 6.12 2.60 1.13
lymph -5.58 0.59 -1.88
Mean 3.55 6.18 11.75
No. of Wins 3 2 10

unable to achieve the target error rate. On average,
ACTIVE-DECORATE requires half as many examples
as ADABOOST to achieve the target error. It is im-
portant to note that ADABOOST itself achieves the
target error with far fewer examples than available in
the full training set, as seen by comparing to the total
dataset sizes. Hence, improving on the data utilization
of ADABOOST is a fairly difficult task.

Our results on average error reductions are summa-
rized in Table 2. For each dataset, the highest error
reduction is presented in bold font. We observed that
on almost all datasets, ACTIVE-DECORATE produces
substantial reductions in error over ADABOOST. Fur-
thermore, on 10 of the datasets, ACTIVE-DECORATE
produces higher reductions in error than the other
active-learning methods. The results on the top 20%

Table 3. Top 20% percent error reduction over AdaBoost

Dataset Qbag Qboost ActiveDecorate
breast-w 30.08 26.55 37.70
soybean 28.29 32.58 46.16
statlog 14.32 13.31 19.13
iris 44.22 20.76 43.70
labor 22.31 36.74 48.92
heart-h 18.31 16.24 15.02
hepatitis 16.77 16.07 25.84
primary 8.37 3.97 10.42
vowel 16.65 43.51 72.06
sonar 13.63 16.72 25.50
diabetes 13.84 9.25 11.73
heart-c 12.80 16.35 13.90
glass 10.47 14.03 18.26
credit-g 10.80 7.75 5.86
lymph 8.35 18.48 14.13
Mean 17.95 19.49 27.22
No. of Wins 4 2 9

error reduction exhibit the same trends (see Table 3).
As discussed above, this metric gives a better indi-
cation of the magnitude of error reduction that can
be expected where active learning has the most im-
pact. Depending on the dataset, ACTIVE-DECORATE
produces a wide range of improvements, from mod-
erate (5.86% on credit-g) to high (72.06% on vowel).
On average, ACTIVE-DECORATE produces a 27.22%
reduction in error.

Figure 1 presents learning curves on datasets
that clearly demonstrate the advantage of ACTIVE-
DECORATE, both in terms of data utilization and error
reduction.
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Figure 1. Comparing different active learning methods to AdaBoost

5. Additional Experiments
5.1. Measures of Utility

There are two main aspects to any Query by Com-
mittee approach. The first is the method employed to
construct the committee, and the second is the mea-
sure used to rank the utility of unlabeled examples
given this commitee. Thus far, we have only com-
pared different methods for constructing the commit-
tees. Following Abe and Mamitsuka (1998), we ranked
unlabeled examples based on the margin of the com-
mittee’s prediction for the example.

An alternate approach is to use an information theo-
retic measure, such as, Jensen-Shannon (JS) diver-
gence to evaluate the potential utility of examples
(Cover & Thomas, 1991). JS divergence is a mea-
sure of similarity between probability distributions
(Gomez-Lopera et al., 2000). We can utilize this mea-
sure if the individual classifiers in the committee pro-
vide us with class membership probabilities, rather
than just the most likely class. If P;(z) is the class
probability distribution given by the i-th classifier for
the example z (which we will abbreviate as P;); we
can then compute the JS divergence of an ensemble
of size n as:

n n
JS(Pi,Py,...,Py) = H(> wiP) — > w;H(P;)
i=1 i=1
Where w; is the vote weight of the i-th classifier in the

ensemble;! and H(P) is the Shannon entropy of the

'DECORATE uses uniform vote weights, which are nor-
malized to sum to one.

distribution P = {p;,j = 1,..., K} defined as:

K
H(P) = - pjlogp;
j=1

Higher values for JS divergence indicate a greater
spread in the predicted class probability distributions
and it is zero if and only if the distributions are identi-
cal. We implemented a version of ACTIVE-DECORATE
that selects the unlabeled examples with the highest
JS divergence. A similar measure was used for ac-
tive learning for text categorization by McCallum and
Nigam (1998). This measure incorporates more in-
formation about the predicted class distribution than
using margins, and hence could result in the selection
of more informative examples.

To test the effectiveness of using JS divergence, we ran
experiments comparing it to using the margin mea-
sure. The experiments were conducted as described
in Section 4.1. Tables 4 summarize the results of the
comparison of the two measures. In terms of data
utilization, the methods seem equally matched; JS
divergence performs better than margins on half the
datasets, and vice-versa on the others. We left out
evaluation on the lymph dataset, since neither method
improves over ADABOOST. On the error reduction
metric, using margins outperforms JS divergence on
10 of the 14 datasets. The results also show, that
there are datasets on which JS divergence and margins
achieve the target error rate with comparable num-
ber of examples, but the error reduction produced by
margins is higher. Figure 2 clearly demonstrates this
phenomenon.



Table 4. Comparing measures of utility: Data utilization
and % error reduction with respect to AdaBoost.

Data Utilization %Error Reduction
Dataset Margin JS Div. | Margin  JS Div.
breast-w 39(0.24) 45(0.27) 9.94 9.67
soybean | 129(0.27) 360(0.75) 26.82 5.84
statlog 27(0.31) 76(0.86) |  6.65 6.14
iris 30(0.31) 40(0.41) 24.58 22.05
labor 15(0.33)  10(0.22) | 30.49 27.13
heart-h 39(0.34) 38(0.33) 6.51 5.30
hepatitis | 23(0.47)  19(0.39) |  6.27 2.40
primary | 130(0.47) 170(0.62) 5.66 4.65
vowel 414(0.49) 468(0.55) 32.67 30.10
sonar 99(0.66)  94(0.62) 12.45 12.50
diabetes 93(0.78) 84(0.70) 6.15 5.68
heart-c 36(0.78) 28(0.61) 1.60 2.85
glass 128(0.81)  140(0.89) 7.20 1.77
credit-g 363(0.92) 270(0.68) 1.13 1.02
Mean 0.51 0.56 12.72 9.79
# Wins 7 7 12 2
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Figure 2. Comparing measures of utility: JS Divergence vs
Margins, on the Iris dataset.

Note that while ACTIVE-DECORATE using either mea-
sure of utility substantially outperforms ADABOOST,
in general using margins produces greater improve-
ments. Using the JS divergence measure tends to se-
lect examples that would reduce the uncertainity of the
predicted class membership probabilities, which helps
to improve classification accuracy. On the other hand,
using margins focuses more directly on determining
the decision boundary. This may account for its bet-
ter performance. For making cost-sensitive decisions,
it is very useful to have accurate class probability es-
timates (Saar-Tsechansky & Provost, 2001). In such
cases, we conjecture that using JS divergence could
be a more effective approach.

Table 5. Comparing ensemble diversity: Win-loss records.

Number of Training Examples
10 15 20 25 30

Decorate vs Bagging 14-1 141 14-1 132 13-2
Decorate vs AdaBoost | 15-0 14-1 14-1 14-1 14-1

5.2. Ensemble Diversity

By exploiting artificial examples, the DECORATE al-
gorithm forces the construction of a diverse set of hy-
potheses that are consistent with the training data.
We believe that this ensemble diversity is the key to
the success of ACTIVE-DECORATE. We ran additional
experiments to verify that DECORATE does indeed pro-
duce more diverse committees than Bagging or ADA-
BoosT. As in (Melville & Mooney, 2004), we use the
disagreement of ensemble members with the ensem-
ble’s prediction as a measure of diversity. More pre-
cisely, if C;(z) is the prediction of the i-th classifier
for the label of z; C*(z) is the prediction of the entire
ensemble, then the diversity of the i-th classifier on
example z is given by:

0 :if Ci(z) =C*(z)
di(z) = { w; : otherwise
Where w; is the vote weight of the i-th classifier. To
compute the diversity of an ensemble of size n, on a
set of examples of size m, we average the above term:

n m

N dia)

i=1 j=1

This measure estimates the probability that a classifier
in an ensemble will disagree with the prediction of the
ensemble as a whole.

The diversity of each ensemble method was evaluated
using 10-fold cross-validation on all 15 datasets. To
test performance on varying amounts of data, each
system was evaluated on the testing data, after train-
ing on increasing subsets of the training data. We
focused on points early on the learning curve, where
we expect active learning to be most effective. The re-
sults (Table 5) are summarized in terms of significant
win/loss records; where a win or loss is only counted
if the difference in diversity (not accuracy) is deter-
mined to be significant at the 0.05 level by a paired
t-test. These results confirm that in most cases DEC-
ORATE does indeed produce significantly more diverse
ensembles than Bagging or ADABOOST.



5.3. Committees for Sample Selection vs.
Prediction

All the active learning methods that we have described
use committees to determine which examples to se-
lect. But in addition to using committees for sample
selection, these methods also use the committees for
prediction. So we are not evaluating which method
selects the best queries for the base learner, but which
combination of sample selection and ensemble method
works the best. The fact that ACTIVE-DECORATE per-
forms better may just be testament to the fact that
DECORATE performs better than ApABoosT. How-
ever, we claim that not only does DECORATE pro-
duce accurate committees, but the committees pro-
duced are also more effective in sample selection. To
verify this, we implemented an alternate version of
AcCTIVE-DECORATE, where at each iteration a com-
mittee constructed by Bagging is used to select the
examples given to DECORATE. In this way, we sep-
arate the evaluation of the method used for sample
selection from the method used for prediction. Simi-
larly, we implemented a version of ACTIVE-DECORATE
using ADABOOST to perform the sample selection.

We compared the three methods of sample selection for
DECORATE on three of the datasets on which ACTIVE-
DECORATE exhibited good performance. We gener-
ated learning curves as in described in section 4.1.
However, we did not run the learning curve trials un-
til all the available training data was exhausted, since
the active learning methods need fewer examples to
achieve the target error rates.

The error reductions over ADABOOST for the differ-
ent sample selection methods is presented are Table 62
The table also includes the maximum training set size,
which corresponds to the last point on the learning
curve. The results show that, on these datasets, using
any of the ensemble sample selection methods in con-
junction with DECORATE produces better results than
ADABOOST. Furthermore, DECORATE committees se-
lect more informative examples for training DECO-
RATE than the other committee sample selection meth-
ods. These trends are clearly seen in Figure 3. It would
be interesting to run similar experiments, using DECO-
RATE ensembles to pick examples for training Bagging,
ADpABoOOST, or J48.

6. Related Work

In their QBC approach, Dagan and Engelson (1995)
measure the utility of examples by vote entropy, which

2These results are not directly comparable to those in
Table 2.

Table 6. Comparing ensemble methods for selection for
Active-Decorate: Percentage error reduction over Ada-

Boost.
Dataset | Maximum Bagging AdaBoost Decorate
Train Size
soybean 300 21.48 20.07 29.96
glass 100 10.72 8.91 12.85
statlog 100 6.87 7.5 10.26
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Figure 3. Comparing different ensembles methods for se-
lecting samples for DECORATE, on the Soybean dataset.

is the entropy of the class distribution, based on the
majority votes of each committee member. McCal-
lum and Nigam (1998) showed that vote entropy does
not perform as well as JS divergence for pool-based
sample selection. Another recently developed effective
committee-based active learner is Co-Testing (Muslea
et al., 2000); however, it requires two redundant views
of the data as in Co-Training (Blum & Mitchell, 1998).
Since most data sets do not have redundant views, Co-
Testing has rather limited applicability. Another gen-
eral approach to sample selection is uncertainty sam-
pling (Lewis & Catlett, 1994); however, this approach
requires a learner that accurately estimates the uncer-
tainty of its decisions, and tends to over-sample the
boundaries of its current incomplete hypothesis (Cohn
et al., 1994). Finally, expected-error reduction methods
for active learning (Cohn et al., 1996; Roy & McCal-
lum, 2001; Zhu et al., 2003) attempt to statistically se-
lect training examples that are expected to minimize
error on the actual test distribution. This approach
has the advantage of avoiding the selection of outliers
whose labeling will not improve accuracy on typical
examples. However, this method is computationally
intense, and must be carefully tailored to a specific
learning algorithm (e.g. naive Bayes); and hence, can-



not be used to select examples for an arbitrary learner.
Active meta-learners like Query by Bagging/Boosting
and ACTIVE-DECORATE have the advantage of being
able to select queries to improve any learner appropri-
ate for a given domain.

7. Conclusion

ACTIVE-DECORATE is a simple, yet effective approach
to active learning. Experimental results show that, in
general, this approach leads to more effective sample
selection than Query by Bagging and Query by Boost-
ing. Compared to ADABOOST with random sampling,
ACTIVE-DECORATE requires about half as many train-
ing examples on average to achieve the target error
rate. Additional experiments support the hypothesis
that for small training sets DECORATE produces more
diverse ensembles than Bagging or ADABoOST. We
believe this increased diversity is the key to ACTIVE-
DECORATE’s superior performance.

Our results also show that using J.S divergence to eval-
uate the utility of examples is less effective for improv-
ing classification accuracy than using margins. JS di-
vergence may be a better measure when the objective
is improving class probability estimates. This is an
interesting area for future work.
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