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Abstract. Active selection of good training examples is an important approach
to reducing data-collection costs in machine learning; however, most existing
methods focus on maximizing classification accuracy. In many applications, such
as those with unequal misclassification costs, producing good class probability
estimates (CPEs) is more important than optimizing classification accuracy.We
introduce novel approaches to active learning based on the algorithms Bootstrap-
LV and ACTIVEDECORATE, by using Jensen-Shannon divergence (a similarity
measure for probability distributions) to improve sample selection for optimiz-
ing CPEs. Comprehensive experimental results demonstrate the benefits of our
approaches.

1 Introduction

Many supervised learning applications require more than a simple classification of in-
stances. Often, also having accurate Class Probability Estimates (CPEs) is critical for
the task. Class probability estimation is a fundamental concept used in a variety of ap-
plications including marketing, fraud detection and credit ranking. For example, in di-
rect marketing the probability that each customer would purchase an item is employed
in order to optimize marketing budget expenditure. Similarly, in credit scoring, class
probabilities are used to estimate the utility of various courses of actions, such as the
profitability of denying or approving a credit application.While prediction accuracy of
CPE improves with the availability of more labeled examples, acquiring labeled data
is sometimes costly. For example, customers’ preferences may be induced from cus-
tomers’ responses to offerings; but solicitations made to acquire customer responses
(labels) may be costly, because unwanted solicitations canresult in negative customer
attitudes. It is therefore critical to reduce the number of label acquisitions necessary to
obtain a desired prediction accuracy.

The active learningliterature [1] offers several algorithms for cost-effective label
acquisitions. Active learners acquire training data incrementally, using the model in-
duced from the available labeled examples to identify helpful additional training exam-
ples for labeling. Different active learning approaches employ different utility scores to
estimate how informative each unlabeled example is, if it islabeled and added to the



training data. When successful, active learning methods reduce the number of instances
that must be labeled to achieve a particular level of accuracy. Almost all work in active
learning has focused on acquisition policies for inducing accurateclassificationmod-
els and thus are aimed at improving classification accuracy.Although active learning
algorithms for classification can be applied for learning accurate CPEs, they may not
be optimal. Active learning algorithms for classification may (and indeed should) avoid
acquisitions that can improve CPEs but are not likely to impact classification. Accurate
classification only requires that the model accurately assigns the highest CPE to the
correct class, even if the CPEs across classes may be inaccurate. Therefore, to perform
well, active learning methods for classification ought to acquire labels of examples that
are likely to change the rank-order of the most likely class.To improve CPEs, however,
it is necessary to identify potential acquisitions that would improve the CPE accuracy,
regardless of the implications for classification accuracy. Bootstrap-LV [2] is an active
learning approach designed specifically to improve CPEs forbinary class problems. The
method acquires labels for examples for which the current model exhibits high variance
for its CPEs. BOOTSTRAP-LV was shown to significantly reduce the number of label
acquisitions required to achieve a given CPE accuracy compared to random acquisitions
and existing active learning approaches for classification.

In this paper, we propose two new active learning approaches. In contrast to BOOTSTRAP-
LV, the methods we propose can be applied to acquire labels toimprove the CPEs of an
arbitrary number of classes. The two methods differ by the measures each employs to
identify informative examples: the first approach, BOOTSTRAP-JS, employs the Jensen-
Shannon divergence measure (JSD) [3]. The second approach,BOOTSTRAP-LV- EXT,
uses a measure of variance inspired by the local variance proposed in BOOTSTRAP-LV.
We demonstrate that for binary class problems,BOOTSTRAP-JS is at least comparable
and often superior to BOOTSTRAP-LV. In addition, we establish that for multi-class
problems, BOOTSTRAP-JS and BOOTSTRAP-LV- EXT identify particularly informative
examples that significantly improve the CPEs compared to a strategy in which a repre-
sentative set of examples are acquired uniformly at random.This paper also extends the
work of Melville and Mooney [4], which introduced a method, ACTIVEDECORATE, for
active learning for classification. They compared two measures for evaluating the utility
of examples - label margins and JSD. The results showed that both measures are effec-
tive for improving classification accuracy, though JSD is less effective than margins. It
was conjectured that JSD would be a particularly useful measure when the objective
is improving CPEs. We demonstrate here that, for the task of active learning for CPE,
ACTIVEDECORATEusing JSD indeed performs significantly better than using margins.

2 Jensen-Shannon Divergence

Jensen-Shannon divergence (JSD) is a measure of the “distance” between two prob-
ability distributions [3] which can also be generalized to measure the distance (simi-
larity) between a finite number of distributions [5]. JSD is anatural extension of the
Kullback-Leibler divergence (KLD) to a set of distributions. KLD is defined between
two distributions, and the JSD of a set of distributions is the average KLD of each
distribution to the mean of the set. Unlike KLD, JSD is a true metric and is bounded.



If a classifier can provide a distribution of class membership probabilities for a given
example, then we can use JSD to compute a measure of similarity between the distri-
butions produced by a set (ensemble) of such classifiers. IfPi(x) is the class proba-
bility distribution given by thei-th classifier for the examplex (which we will abbre-
viate asPi) we can then compute the JSD of a set of sizen asJS(P1, P2, ..., Pn) =
H(

∑n

i=1
wiPi) −

∑n

i=1
wiH(Pi); wherewi is the vote weight of thei-th classifier in

the set;5 andH(P ) is the Shannon entropy of the distributionP = {pj : j = 1, ...,K},
defined asH(P ) = −

∑K

j=1
pj log pj . Higher values for JSD indicate a greater spread

in the CPE distributions, and it is zero if and only if the distributions are identical. JSD
has been successfully used to measure the utility of examples in active learning for im-
proving classification accuracy [4]. A similar measure was also used for active learning
for text classification by McCallum and Nigam [6].

3 Bootstrap-LV and JSD

To the best of our knowledge, Bootstrap-LV [2] is the only active learning algorithm
designed for learning CPEs. It was shown to require significantly fewer training exam-
ples to achieve a given CPE accuracy compared to random sampling anduncertainty
sampling, which is an active learning method focused on classification accuracy [7].
Bootstrap-LV reduces CPE error by acquiring examples for which the current model
exhibits relatively high local variance (LV), i.e., the variance in CPE for a particular ex-
ample. A high LV for an unlabeled example indicates that the model’s estimation of its
class membership probabilities is likely to be erroneous, and the example is therefore
more desirable to be selected for learning.

Bootstrap-LV, as defined in [2] is only applicable to binary class problems. We
first provide the details of this method, and then describe how we extended it to solve
multi-class problems. Bootstrap-LV is an iterative algorithm that can be applied to any
base learner. At each iteration, we generate a set ofn bootstrap samples [8] from
the training set, and apply the given learnerL to each sample to generaten clas-
sifiers Ci : i = 1, ..., n. For each example in the unlabeled setU , we compute a
score which determines its probability of being selected, and which is proportional
to the variance of the CPEs. More specifically, the score for examplexj is computed
as(

∑n

i=1
(pi(xj) − pj)

2)/pj,min; wherepi(xj) denotes the estimated probability the
classifierCi assigns to the event that examplexj belongs to class 0 (the choice of per-
forming the calculation for class 0 is arbitrary, since the variance for both classes is
identical),pj is the average estimate for class 0 across classifiersCi, andpj,min is the
average probability estimate assigned to the minority class by the different classifiers.
Saar-Tsechansky and Provost [2] attempt to compensate for the under-representation of
the minority class by introducing the termpj,min in the utility score. The scores pro-
duced for the set of unlabeled examples are normalized to produce a distribution, and
then a subset of unlabeled examples are selected based on this distribution. The labels
for these examples are acquired and the process is repeated.

The model’s CPE variance allows the identification of examples that can improve
CPE accuracy. However as noted above, the local variance estimated by Bootstrap-LV

5 Our experiments use uniform vote weights, normalized to sum to one.



captures the CPE variance of a single class and thus is not applicable to multi class
problems. Since we have a set of probability distributions for each example, we can
instead, use an information theoretic measure, such as JSD to measure the utility of an
example. The advantage to using JSD is that it is a theoretically well-motivated dis-
tance measure for probability distributions [3] that can betherefore used to capture the
uncertainty of the class distribution estimation; and furthermore, it naturally extends to
distributions over multiple classes. We propose a variation of BOOTSTRAP-LV, where
the utility score for each example is computed as the JSD of the CPEs produced by the
set of classifiersCi. This approach, BOOTSTRAP-JS, is presented in Algorithm 1.

Our second approach, BOOTSTRAP-LV- EXT, is inspired by the Local Variance con-
cept proposed in BOOTSTRAP-LV. For each example and for each class, the variance
in the prediction of the class probability across classifiers Ci, i = 1, ..., n is computed,
capturing the uncertainty of the CPE for this class. Subsequently, the utility score for
each potential acquisition is calculated as the mean variance across classes, reflect-
ing the average uncertainty in the estimations of all classes. Unlike BOOTSTRAP-LV,
BOOTSTRAP-LV- EXT does not incorporate the factor ofpj,min in the score for multi-
class problems, as this is inappropriate in this scenario.

Algorithm 1 Bootstrap-JS
Given: set of training examplesT , set of unlabeled training examplesU , base learning algo-
rithm L, number of bootstrap samplesn, size of each samplem

1. Repeat until stopping criterion is met
2. Generaten bootstrap samplesBi, i = 1, ..., n from T
3. Apply learnerL to each sampleBi to produce classifierCi

4. For eachxj ∈ U
5. ∀Ci generate CPE distributionPi(xj)
6. scorej = JS(P1, P2, ..., Pn)
7. ∀xj ∈ U, D(xj) = scorej/

P

j
scorej

8. Sample a subsetS of m examples fromU based on the distributionD
9. Remove examples inS from U and add toT

10. ReturnC = L(T )

4 ActiveDecorate and JSD

ACTIVEDECORATE is an active learning method that selects examples to be labeled so
as to improve classification accuracy [4]. It is built on theQuery by Committee(QBC)
framework for selective sampling [9]; and has been shown to outperform other QBC
approaches, Query by Bagging and Query by Boosting. ACTIVEDECORATE is based
on DECORATE [10, 11], which is a recently introduced ensemble meta-learner that di-
rectly constructs diverse committees of classifiers by employing specially-constructed
artificial training examples.

Given a pool of unlabeled examples, ACTIVEDECORATE iteratively selects exam-
ples to be labeled for training. In each iteration, it generates a committee of classifiers



by applying DECORATE to the currently labeled examples. Then it evaluates the poten-
tial utility of each example in the unlabeled set, and selects a subset of examples with
the highest expected utility. The labels for these examplesare acquired and they are
transfered to the training set. The utility of an example is determined by some measure
of disagreementin the committee about its predicted label. Melville and Mooney [4]
compare two measures of utility for ACTIVEDECORATE— marginsand JSD. Given the
CPEs predicted by the committee for an example,6 the margin is defined as the differ-
ence between the highest and second highest predicted probabilities. It was shown that
ACTIVEDECORATE using either measure of utility produces substantial errorreduc-
tions in classification compared to random sampling. However, in general, using mar-
gins produces greater improvements. Using JSD tends to select examples that reduce
the uncertainty in CPE, which indirectly helps to improve classification accuracy. On
the other hand, ACTIVEDECORATEusing margins focuses more directly on determin-
ing the decision boundary. This may account for its better classification performance.
It was conjectured that if the objective is improving CPEs, then JSD may be a better
measure.

In this paper, we validate this conjecture. In addition to using JSD, we made two
more changes to the original algorithm, each of which independently improved its per-
formance. First, each example in the unlabeled set is assigned a probability of being
sampled, which is proportional to the measure of utility forthe example. Instead of se-
lecting the examples with them highest utilities, we sample the unlabeled set based on
the assigned probabilities (as in BOOTSTRAP-LV). This sampling has been shown to
improve the selection mechanism as it reduces the probability of adding outliers to the
training data and avoids selecting many similar or identical examples [12].

The second change we made is in the DECORATEalgorithm. DECORATEensembles
are created iteratively; where in each iteration a new classifier is trained. If adding
this new classifier to the current ensemble increases the ensemble training error, then
this classifier is rejected, else it is added to the current ensemble. In previous work,
training error was evaluated using the 0/1 loss function; however, DECORATE can use
any loss (error) function. Since we are interested in improving CPE we experimented
with two alternate error functions — Mean Squared Error (MSE) and Area Under the
Lift Chart (AULC) (defined in the next section). Using MSE performed better on the
two metrics used, so we present these results in the rest of the paper. Our approach,
ACTIVEDECORATE-JS, is shown in Algorithm 2.

5 Experimental Evaluation

5.1 Methodology

To evaluate the performance of the different active CPE methods, we ran experiments
on 24 representative data sets from the UCI repository [13].12 of these datasets were
two-class problems, the rest being multi-class. For three datasets (kr-vs-kp, sick, and
optdigits), we used a random sample of 1000 instances to reduce experimentation time.

6 The CPEs for a committee are computed as the simple average of the CPEs produced by its
constituent classifiers.



Algorithm 2 ActiveDecorate-JS
Given: set of training examplesT , set of unlabeled training examplesU , base learning algo-
rithm L, number of bootstrap samplesn, size of each samplem

1. Repeat until stopping criterion is met
2. Generate an ensemble of classifiers,C∗ = Decorate(L, T, n)
3. For eachxj ∈ U
4. ∀Ci ∈ C∗ generate CPE distributionPi(xj)
5. scorej = JS(P1, P2, ..., Pn)
6. ∀xj ∈ U, D(xj) = scorej/

P

j
scorej

7. Sample a subsetS of m examples fromU based on the distributionD
8. Remove examples inS from U and add toT
9. ReturnDecorate(L, T, n)

All the active learning methods we discuss in this paper are meta-learners, i.e., they
can be applied to any base learner. For our experiments, as a base classifier we use a
Probability Estimation Tree (PET) [14], which is an unpruned J487 decision tree for
which Laplace correction is applied at the leaves. Saar-Tsechansky and Provost [2]
showed that using Bagged-PETs for prediction produced better probability estimates
than single PETs for BOOTSTRAP-LV; so we used Bagged-PETs for both BOOTSTRAP-
LV and BOOTSTRAP-JS. The number of bootstrap samples and the size of ensembles
in ACTIVEDECORATEwas set to 15.

The performance of each algorithm was averaged over 10 runs of 10-fold cross-
validation. In each fold of cross-validation, we generatedlearning curves as follows.
The set of available training examples was treated as an unlabeled pool of examples, and
at each iteration the active learner selected a sample of points to be labeled and added
to the training set. Each method was allowed to select a totalof 33 batches of training
examples, measuring performance after each batch in order to generate a learning curve.
To reduce computation costs, and because of diminishing variance in performance for
different selected examples along the learning curve, we incrementally selected larger
batches at each acquisition phase. The resulting curves evaluate how well an active
learner orders the set of available examples in terms of utility for learning CPEs. As a
baseline, we used random sampling, where the examples in each iteration were selected
randomly.

To the best of our knowledge, there are no publicly-available datasets that provide
true class probabilities for instances; hence there is no direct measure for the accuracy of
CPEs. Instead, we use two indirect metrics proposed in otherstudies for CPEs [16]. The
first metric is squared error, which is defined for an instancexj , as

∑
y(Ptrue(y|xj) −

P (y|xj))
2; whereP (y|xj) is the predicted probability thatxj belongs to classy, and

Ptrue(y|xj) is the true probability thatxj belongs toy. We compute the Mean Squared
Error (MSE) as the mean of this squared error for each examplein the test set. Since
we only know the true class labels and not the probabilities,we definePtrue(y|xj)
to be 1 when the class ofxj is y and 0 otherwise. Given that we are comparing with
this extreme distribution, squared error tends to favor classifiers that produce accurate

7 J48 is the Weka [15] implementation of C4.5



classification, but with extreme probability estimates. Hence, we do not recommend
using this metric by itself.

The second measure we employ is the area under the lift chart (AULC) [17], which
is computed as follows. First, for each classk, we take theα% of instances with the
highest probability estimates for classk. rα is defined to be the proportion of these
instances actually belonging to classk; andr100 is the proportion of all test instances
that are from classk. The lift l(α), is then computed asrα

r100

. The AULCk is calculated
by numeric integration ofl(α) from 0 to 100 with a step-size of 5. The overall AULC is
computed as the weighted-average of AULCk for eachk; where AULCk is weighted by
the prior class probability ofk according to the training set. AULC is a measure of how
good the probability estimates are for ranking examples correctly, but not how accurate
the estimates are. However, in the absence of a direct measure, an examination of MSE
and AULC in tandem provides a good indication of CPE accuracy. We also measured
log-loss or cross-entropy, but these results were highly correlated with MSE, so we do
not report them here.

To effectively summarize the comparison of two algorithms,we compute the per-
centage reduction in MSE of one over the other, averaged along the points of the learn-
ing curve. We consider the reduction in error to besignificantif the difference in the
errors of the two systems, averaged across the points on the learning curve, is deter-
mined to be statistically significant according to paired t-tests (p < 0.05). Similarly, we
report the percentageincreasein AULC.8

5.2 Results

The results of all our comparisons are presented in Tables 1-3. In each table we present
two active learning methods compared to random sampling as well as to each other.
We present the statistics% MSE reductionand% AULC increaseaveraged across the
learning curves. All statistically significant results arepresented in bold font. The bot-
tom of each table presents the win/draw/loss (w/d/l) record; where a win or loss is only
counted if the improved performance is determined to be significant as defined above.

5.3 Bootstrap-JS, Bootstrap-LV and Bootstrap-LV-EXT

We first examine the performance of BOOTSTRAP-JS for binary-class problems and
compared it with that of BOOTSTRAP-LV and of random sampling. As shown in Table
1, BOOTSTRAP-JS often exhibits significant improvements over BOOTSTRAP-LV, or
is otherwise comparable to BOOTSTRAP-LV. For all data sets, BOOTSTRAP-JS shows
substantial improvements with respect to examples selected uniformly at random on
both MSE and AULC. The effectiveness of BOOTSTRAP-JS can be clearly seen in Fig-
ure 1. (The plot shows the part of learning curve where the twoactive learners diverge
in performance.)

In the absence of an active class probability estimation approach that can be applied
to multi-class problems, we compare BOOTSTRAP-JS and BOOTSTRAP-LV- EXT with
acquisitions of a representative set of examples selected uniformly at random. Table 2

8 A larger AULC usually implies better probability estimates.



Table 1. BOOTSTRAP-JS versus BOOTSTRAP-LV on binary datasets

%MSE Reduction %AULC Increase
Data set LV vs. JS vs. JS vs.LV vs. JS vs. JS vs.

Random Random LV Random Random LV

breast-w 14.92 14.81 -0.12 0.55 0.52 -0.02
colic -1.45 -0.04 1.39 -0.95 -0.56 0.41

credit-a 2.1 3.98 1.92 -0.49 -0.01 0.48
credit-g -0.16 0.77 0.93 -0.01 0.3 0.32
diabetes 1.01 1.75 0.75 0.18 0.58 0.4
heart-c 1.68 0.29 -1.43 0.57 -0.08 -0.64

hepatitis 0.19 2.64 2.43 0.19 1.03 0.84
ion 10.65 12.26 1.82 1.13 0.96 -0.16

kr-vs-kp 38.97 43 8.07 1.64 1.79 0.15
sick 19.97 20.84 1.03 0.62 0.41 -0.21
sonar 2.44 1.32 -1.17 0.58 0.74 0.16
vote 6.3 9.14 3.08 0.28 0.46 0.18
w/d/l 9/2/1 10/2/0 9/1/2 7/3/2 9/2/1 8/2/2

presents results on multi-class datasets for BOOTSTRAP-JS and BOOTSTRAP-LV- EXT.
Both active methods acquire particularly informative examples, such that for a given
number of acquisitions, both methods produce significant reductions in error over ran-
dom sampling. The two active methods perform comparably to each other for most
data sets, and JSD performs slightly better in some domains.Because JSD success-
fully measures the uncertainty of the distribution estimation over all classes, we would
recommend using BOOTSTRAP-JS for actively learning CPE models in multi-class do-
mains.

Table 2. BOOTSTRAP-JS versus BOOTSTRAP-LV- EXT on multi-class datasets

% MSE Reduction % AULC Increase
Data set LV-Ext JS vs. JS vs. LV-Ext JS vs. JS vs.

vs. Rand. Rand. LV-Extvs. Rand. Rand. LV-Ext

anneal 12.27 13.06 0.89 0.05 0.5 0.45
autos 0.96 0.38 -0.58 1.51 0.83 -0.66

balance-s 1.39 0.92 -0.48 0.72 0.58 -0.14
car 7.21 6.93 -0.31 1.53 1.41 -0.12

glass -0.55 -0.19 0.36 0.61 0.48 -0.11
hypo 46.62 46.41 -0.9 0.49 0.47 -0.02
iris 6.64 10.79 4.58 0.46 0.83 0.39

nursery 14.37 14.25 -0.20 0.44 0.42 -0.01
optdigits 0.35 0.71 0.35 0.9 1.13 0.23
segment 11.08 11.19 0.08 0.83 0.79 -0.04
soybean 1.5 0.78 -0.74 -0.46 0.4 0.87

wine 13.13 13.34 0.36 1.11 1.08 -0.02
w/d/l 10/1/1 11/1/0 4/5/3 10/1/1 12/0/0 4/6/2



 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 100  200  300  400  500

M
S

E

Number of Examples Labeled

Random
Bootstrap-LV
Bootstrap-JS

Fig. 1. Comparing different algorithms onkr-vs-kp

5.4 ActiveDecorate: JSD versus Margins

Table 3 shows the results of using JSD versus margins for ACTIVEDECORATE. In pre-
vious work, it was shown that ACTIVEDECORATE, with both these measures, performs
very well on the task of active learning for classification. Our results here confirm that
both measures are also effective for active learning for CPE. ACTIVEDECORATEusing
margins focuses on picking examples that reduce the uncertainty of the classification
boundary. Since having better probability estimates usually improves accuracy, it is not
surprising that a method focused on improving classification accuracy selects exam-
ples that may also improve CPE. However, using JSD directly focuses on reducing the
uncertainty in probability estimates and hence performs much better on this task than
margins. On the AULC metric both measures seem to perform comparably; however, on
MSE, JSD shows clear and significant advantages over using margins. As noted above,
one needs to analyze a combination of these metrics to effectively evaluate any active
CPE method. Figure 2 presents the comparison of ACTIVEDECORATEwith JSD versus
margins on the AULC metric onglass. The two methods appear to be comparable, with
JSD performing better earlier in the curve and margins performing better later. How-
ever, when the two methods are compared on the same dataset, using the MSE metric
(Figure 3), we note that JSD outperforms margins throughoutthe learning curve. Based
on the combination of these results, we may conclude that using JSD is more likely to
produce accurate CPEs for this dataset. This example reinforces the need for examining
multiple metrics.

5.5 ActiveDecorate-JS vs Bootstrap-JS

In addition to demonstrating the effectiveness of JSD, we also compare the two active
CPE methods that use JSD. The comparison is made in two scenarios. In thefull dataset
scenario, the setting is the same as in previous experiments. In theearly stagesscenario,
each algorithm is allowed to select 1 example at each iteration starting from 5 examples
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and going up to 20 examples. This characterizes the performance at the beginning of
the learning curve. In the interest of space, we only presentthe win/draw/loss statistics
(Table 4). For thefull dataset, on the AULC metric, the methods perform comparably,
but BOOTSTRAP-JS outperforms ACTIVEDECORATE-JS on MSE. However, for most
datasets, ACTIVEDECORATE-JS shows significant advantages over BOOTSTRAP-JS in
the early stages. These results could be explained by the fact that DECORATE (used
byACTIVEDECORATE-JS) has a clear advantage over Bagging (used by BOOTSTRAP-
JS) when training sets are small, as explained in [11].

For DECORATE, we only specify the desired ensemble size; the ensembles formed
could be smaller depending on the maximum number of classifiers it is permitted to ex-
plore. In our experiments, the desired size was set to 15 and amaximum of 50 classifiers
were explored. On average DECORATE ensembles formed by ACTIVEDECORATE-JS
are much smaller than those formed by Bagging in BOOTSTRAP-JS. Having larger
ensembles generally increases classification accuracy [10] and may improve CPE. This



Table 3. ACTIVEDECORATE-JS versus Margins

% MSE Reduction % AULC Increase
Data set Margin JS vs. JS vs. Margin JS vs. JS vs.

vs. Rand. Rand. Marginvs. Rand. Rand. Margin

breast-w 9.32 23.91 12.73 0.29 -0.50 -0.79
colic 8.65 17.99 10.17 4 2.44 -1.47

credit-a 15.83 21.97 7.08 2.85 2.98 0.07
credit-g 7.06 8.91 2.02 6.98 7.79 0.75
diabetes -3.11 0.07 2.9 4.98 0.84 -3.94
heart-c 4.66 6.3 1.72 1.54 0.53 -0.99

hepatitis 4.49 7.34 2.99 1.93 0.14 -1.95
ion 29.23 36.51 10.01 5.73 5.53 -0.2

kr-vs-kp 34 65.27 50.77 6.46 2.19 -3.99
sick 39.18 64.38 42.24 10.49 9.11 -1.24

sonar 9.3 9.31 0.15 5.84 5.37 -0.41
vote 12.15 45.79 38.12 0.81 -0.51 -1.31

anneal 45.51 63.8 32.1 7.62 11.14 3.27
autos 8.32 11.38 3.57 15.34 11.52 -3.34

balance-s 14.1 24.63 12.05 5.24 6.14 0.86
car 2.9 53.32 52.27 5.56 16.23 10.3

glass 7.62 12.31 5.02 8.62 10.51 1.82
hypo 31.37 89.87 86.34 4.03 4.7 0.65
iris -1.32 34.32 32.7 -1.56 1.52 3.16

nursery 2.62 69.99 69.52 0.56 6.43 5.9
optdigits 32.56 39.8 10.67 19.38 17.79 -1.4
segment 56.95 71.12 27.27 6.11 6.85 0.71
soybean 15.82 21.84 7.42 21.1 34.35 10.89

wine 17.09 28.85 13.81 1.66 1.17 -0.5
w/d/l 22/0/2 23/1/0 23/1/0 23/0/1 22/2/0 10/3/11

Table 4. BOOTSTRAP-JS vs. ACTIVEDECORATE-JS: Win/Draw/Loss records

% MSE Reduction% AULC Increase
Full dataset 18/0/6 13/0/11
Early stages 8/2/14 2/5/17

may account for the weaker overall performance of ACTIVEDECORATE-JS to BOOTSTRAP-
JS; and may be significantly improved by increasing the ensemble size.

6 Conclusions and Future Work
In this paper, we propose the use of Jensen-Shannon divergence as a measure of the util-
ity of acquiring labeled examples for learning accurate class probability estimates. Ex-
tensive experiments have demonstrated that JSD effectively captures the uncertainty of
class probability estimation and allows us to identify particularly informative examples
that significantly improve the model’s class distribution estimation. In particular, we
show that, for binary-class problems, BOOTSTRAP-JS which employs JSD to acquire
training examples is either comparable or significantly superior to BOOTSTRAP-LV, an
existing active CPE learner for binary class problems. BOOTSTRAP-JS maintains its
effectiveness for multi-class domains as well: it acquiresinformative examples which
result in significantly more accurate models as compared to models induced from exam-
ples selected uniformly at random. We have also demonstrated that when JSD is used



with ACTIVEDECORATE, an active learner for classification, it produces substantial im-
provements over using margins, which focuses on classification accuracy. Furthermore,
our results indicate that, in general, BOOTSTRAP-JS with Bagged-PETs is a preferable
method for active CPE compared to ACTIVEDECORATE-JS. However, if one is con-
cerned primarily with the early stages of learning, then ACTIVEDECORATE-JS has a
significant advantage.

Our study uses standard metrics for evaluating CPE employedin existing research.
However, we have shown that JSD is a good measure for selecting examples for im-
proving CPE; and therefore it should also be a good measure for evaluating CPE. When
the true class probabilities are known, we propose to also evaluate CPEs by computing
the JSD between the estimated and the true class distributions.
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