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Abstract

Query by Committee is an e�ective approach
to selective sampling in which disagreement
amongst an ensemble of hypotheses is used
to select data for labeling. Query by Bag-
ging and Query by Boosting are two prac-
tical implementations of this approach that
use Bagging and Boosting, respectively, to
build the committees. For e�ective active
learning, it is critical that the committee be
made up of consistent hypotheses that are
very di�erent from each other. Decorate

is a recently developed method that directly
constructs such diverse committees using ar-
ti�cial training data. This paper introduces
Active-Decorate, which uses Decorate
committees to select good training examples.
Extensive experimental results demonstrate
that, in general, Active-Decorate outper-
forms both Query by Bagging and Query by
Boosting.

1. Introduction

The ability to actively select the most useful training
examples is an important approach to reducing the
amount of supervision required for e�ective learning.
In particular, pool-based sample selection, in which the
learner chooses the best instances for labeling from a
given set of unlabeled examples, is the most practi-
cal approach for problems in which unlabeled data is
relatively easily available (Cohn et al., 1994). A theo-
retically well-motivated approach to sample selection
is Query by Committee (Seung et al., 1992), in which
an ensemble of hypotheses is learned and examples
that cause maximum disagreement amongst this com-
mittee (with respect to the predicted categorization)
are selected as the most informative. Popular ensem-
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ble learning algorithms, such as Bagging and Boost-
ing, have been used to eÆciently learn e�ective com-
mittees for active learning (Abe & Mamitsuka, 1998).
Meta-learning ensemble algorithms, such as Bagging
and Boosting, that employ an arbitrary base classi�er
are particularly useful since they are general purpose
and can be applied to improve any learner that is ef-
fective for a given domain.

An important property of a good ensemble for
committee-based active learning is diversity. Only a
committee of hypotheses that e�ectively samples the
version space of all consistent hypotheses is productive
for sample selection (Cohn et al., 1994). Decorate

(Melville & Mooney, 2003) is a recently introduced
ensemble meta-learner that directly constructs diverse
committees by employing specially-constructed arti�-
cial training examples. Extensive experiments have
demonstrated that Decorate constructs more accu-
rate ensembles than both Bagging and AdaBoost

when training data is limited. Decorate has also
been successfully used for the task of active feature
acquisition (i.e., given a feature acquisition budget,
identify the instances with missing values for which
acquiring complete feature information will result in
the most accurate model) (Melville et al., 2004).

This paper presents a new approach to active learn-
ing, Active-Decorate, which uses committees pro-
duced by Decorate to select examples for labeling.
Extensive experimental results on several real-world
datasets show that using this approach produces sub-
stantial improvement over using Decorate with ran-
dom sampling. Active-Decorate requires far fewer
examples than Decorate, and on average also pro-
duces considerable reductions in error. In general, our
approach also outperforms both Query by Bagging and
Query by Boosting.

2. Query by Committee

Query by Committee (QBC) is a very e�ective active
learning approach that has been successfully applied to



di�erent classi�cation problems (McCallum & Nigam,
1998; Dagan & Engelson, 1995; Liere & Tadepalli,
1997). A generalized outline of the QBC approach
is presented in Algorithm 1. Given a pool of unla-
beled examples, QBC iteratively selects examples to
be labeled for training. In each iteration, it generates
a committee of classi�ers based on the current train-
ing set. Then it evaluates the potential utility of each
example in the unlabeled set, and selects a subset of
examples with the highest expected utility. The labels
for these examples are acquired and they are transfered
to the training set. Typically, the utility of an exam-
ple is determined by some measure of disagreement in
the committee about its predicted label. This process
is repeated until the number of available requests for
labels is exhausted.

Freund et al. (1997) showed that under certain as-
sumptions, Query by Committee can achieve an expo-
nential decrease in the number of examples required
to attain a particular level of accuracy, as compared
to random sampling. However, these theoretical re-
sults assume that Gibbs algorithm is used to generate
the committee of hypotheses used for sample selection.
The Gibbs algorithm for most interesting problems is
computationally intractable. To tackle this issue, Abe
and Mamitsuka (1998) proposed two variants of QBC,
Query by Bagging and Query by Boosting, where Bag-
ging and AdaBoost are used to construct the com-
mittees for sample selection. In their approach, they
evaluate the utility of candidate examples based on the
margin of the example; where the margin is de�ned as
the di�erence between the number of votes in the cur-
rent committee for the most popular class label, and
that for the second most popular label. Examples with
smaller margins are considered to have higher utility.

3. Active-Decorate

It is bene�cial in QBC to use an ensemble method that
builds a diverse committee, in which each hypothe-
sis is as di�erent as possible, while still maintaining
consistency with the training data. Decorate is an
ensemble method that explicitly focuses on creating
ensembles that are diverse (Melville & Mooney, 2003;
Melville & Mooney, 2004). A summary of the Dec-
orate algorithm is provided in the following subsec-
tion. We propose a variant of Query by Committee,
Active-Decorate, that uses Decorate (in Algo-
rithm 1) to construct committees for sample selection.

To evaluate the expected utility of unlabeled exam-
ples, we also used the margins on the examples, as
in Abe and Mamitsuka (1998). We generalized their
de�nition, to allow the base classi�ers in the ensem-

Algorithm 1 Generalized Query by Committee

Given:

T - set of training examples
U - set of unlabeled training examples
BaseLearn - base learning algorithm
k - number of selective sampling iterations
m - size of each sample

1. Repeat k times

2. Generate a committee of classi�ers,
C� = EnsembleMethod(BaseLearn; T )

3. 8xj 2 U , compute Utility(C�; xj), based
on the current committee

4. Select a subset S of m examples that
maximizes utility

5. Label examples in S

6. Remove examples in S from U and add
to T

7. Return EnsembleMethod(BaseLearn; T )

ble to provide class probabilities, instead of just the
most likely class label. Given the class membership
probabilities predicted by the committee, the margin
is then de�ned as the di�erence between the highest
and second highest predicted probabilities.

3.1. Decorate

This section summarizes theDecorate algorithm; for
further details see (Melville & Mooney, 2003; Melville
& Mooney, 2004). The approach is motivated by the
fact that combining the outputs of multiple classi�ers
is only useful if they disagree on some inputs (Krogh
& Vedelsby, 1995). We refer to the amount of dis-
agreement as the diversity of the ensemble, which we
measure as the probability that a random ensemble
member's prediction on a random example will dis-
agree with the prediction of the complete ensemble.

Decorate was designed to use additional arti�cially-
generated training data in order to generate highly di-
verse ensembles. An ensemble is generated iteratively,
learning one new classi�er at each iteration and adding
it to the current ensemble. The ensemble is initialized
with the classi�er trained on the given data. The clas-
si�ers in each successive iteration are trained on the
original data and also on some arti�cial data. In each
iteration, a speci�ed number of arti�cial training ex-
amples are generated based on a simple model of the
data distribution. The category labels for these arti-
�cially generated training examples are chosen so as
to di�er maximally from the current ensemble's pre-



dictions. We refer to this arti�cial training set as the
diversity data. We train a new classi�er on the union
of the original training data and the diversity data. If
adding this new classi�er to the current ensemble in-
creases the ensemble training error, then this classi�er
is rejected, else it is added to the current ensemble.
This process it repeated until the desired committee
size is reached or a maximum number of iterations is
exceeded. For this study the desired committee size
and maximum number of iteration were set to 15 and
50 respectively.

The arti�cial data is constructed by randomly gener-
ating examples using an approximation of the train-
ing data distribution. For numeric attributes, a Gaus-
sian distribution is determined by estimating the mean
and standard deviation of the training set. For nom-
inal attributes, the probability of occurrence of each
distinct value is determined using Laplace estimates
from the training data. Examples are then generated
by randomly picking values for each feature based on
these distributions, assuming attribute independence.
In each iteration, the arti�cially generated examples
are labeled based on the current ensemble. Given an
example, we compute the class membership probabili-
ties predicted by the current ensemble, replacing zero
probabilities with a small � for smoothing. Labels
are then sampled from this distribution, such that the
probability of selecting a label is inversely proportional
to the current ensemble's predictions.

4. Experimental Evaluation

4.1. Methodology

To evaluate the performance of Active-Decorate,
we ran experiments on 15 representative data sets from
the UCI repository (Blake & Merz, 1998). We com-
pared the performance of Active-Decorate with
that of Query by Bagging (QBag), Query by Boost-
ing (QBoost) and Decorate, all using an ensemble
size of 15. J48 decision-tree induction, which is the
Weka (Witten & Frank, 1999) implementation of C4.5
(Quinlan, 1993), was used as the base learner for all
methods.

The performance of each algorithm was averaged over
two runs of 10-fold cross-validation. In each fold of
cross-validation, we generated learning curves in the
following fashion. The set of available training exam-
ples was treated as an unlabeled pool of examples, and
at each iteration the active learner selected a sample
of points to be labeled and added to the training set.
For Decorate, the examples in each iteration were
selected randomly. The resulting curves evaluate how

well an active learner orders the set of available ex-
amples in terms of utility. At the end of the learning
curve, all algorithms see exactly the same training ex-
amples.

To maximize the gains of active learning, it is best
to acquire a single example in each iteration. How-
ever to make our experiments computationally feasi-
ble, we choose larger sample sizes for the bigger data
sets. In particular, we used a sample size of two for
the primary dataset, and three for breast-w, soybean,
diabetes, vowel and credit-g.

The primary aim of active learning is to reduce the
amount of training data needed to induce an accurate
model. To evaluate this, we �rst de�ne the target er-
ror rate as the error that Decorate can achieve on a
given dataset, as determined by its error rate averaged
over the points on the learning curve corresponding to
the last 50 training examples. We then record the
smallest number of examples required by a learner to
achieve the same or lower error. We de�ne the data
utilization ratio, as the number of examples an active
learner requires to reach the target error rate divided
by the number Decorate requires. This metric re-
ects how eÆciently the active learner is using the data
and is similar to a measure used by Abe and Mamit-
suka (1998).

Another metric for evaluating an active learner is
how much it improves accuracy over random sampling
given a �xed amount of labeled data. Therefore, we
also compute the percentage reduction in error over
Decorate averaged over points on the learning curve.
As mentioned above, towards the end of the learning
curve, all methods will have seen almost all the same
examples. Hence, the main impact of active learning is
lower on the learning curve. To capture this, we report
the percentage error reduction averaged over only the
20% of points on the learning curve, where the largest
improvements are produced. This is similar to a mea-
sure reported by Saar-Tsechansky and Provost (2001).
When computing the error reduction of one system
over another, the reduction is considered signi�cant if
the di�erence in the errors of the two systems aver-
aged across the selected points on the learning curve
is determined to be statistically signi�cant according
to paired t-tests (p < 0:05).

4.2. Results

The data utilization of the di�erent active learners
with respect to Decorate is summarized in Table 1.
We present the number of examples required for each
system to achieve the target error rate and, in paren-
theses, the data utilization ratio. The smallest num-



Table 1. Data utilization with respect to Decorate

Dataset Total Size Decorate QBag QBoost ActiveDecorate Target Error (%)
Soybean 615 492(1.00) 267(0.54) 219(0.45) 144(0.29) 6.59
Vowel 891 840(1.00) - - 477(0.57) 3.81
Statlog 243 81(1.00) 84(1.04) 89(1.10) 46(0.57) 19.21
Hepatitis 140 39(1.00) 30(0.77) 43(1.10) 23(0.59) 16.96
Primary 305 238(1.00) 202(0.85) - 164(0.69) 56.23
Heart-c 273 50(1.00) 57(1.14) 41(0.82) 36(0.72) 20.97
Sonar 187 125(1.00) 186(1.49) 131(1.05) 99(0.79) 18.39
Heart-h 265 49(1.00) 31(0.63) 47(0.96) 39(0.80) 19.93
Glass 193 118(1.00) 97(0.82) 101(0.86) 100(0.85) 27.00
Diabetes 691 234(1.00) 114(0.49) 393(1.68) 201(0.86) 25.09
Lymph 133 27(1.00) 40(1.48) 40(1.48) 24(0.89) 22.21
Labor 51 13(1.00) 26(2.00) 19(1.46) 12(0.92) 15.14
Iris 135 32(1.00) 33(1.03) 125(3.91) 30(0.94) 5.25
Credit-g 900 498(1.00) 213(0.43) 243(0.49) 495(0.99) 26.36
Breast-w 629 30(1.00) 45(1.50) 75(2.50) 39(1.30) 3.94
No. of Wins 1 4 0 10

ber of examples needed for each dataset is presented in
bold font. On all but one dataset, Active-Decorate
produces improvements over Decorate in terms of
data utilization. Furthermore, Active-Decorate
outperforms both the other active learners on 10 of the
datasets. QBag and QBoost were unable to achieve
the target error rate on vowel ; and QBoost also failed
to achieve the target error on primary. Further-
more, on several datasets QBag and QBoost required
more training examples than Decorate. On aver-
age, Active-Decorate required 78% of the number
of examples that Decorate used to reach the target
error. It is important to note that Decorate itself
achieves the target error with far fewer examples than
available in the full training set, as seen by comparing
to the total dataset sizes. Hence, improving on the
data utilization of Decorate is a fairly diÆcult task.
Figure 1 presents learning curves that clearly demon-
strate the advantage of Active-Decorate. On one
dataset, breast-w, Active-Decorate requires a few
more examples thanDecorate. This dataset exhibits
a ceiling e�ect in learning, where Decorate manages
to reach the target error rate using only 30 of the 629
available examples, making it diÆcult to improve on
(Figure 2).

Our results on error reductions are summarized in Ta-
ble 2. The signi�cant values are presented in bold font.
We observed that on almost all datasets, Active-
Decorate produces substantial reductions in error
over Decorate. Furthermore, on 8 of the datasets,
Active-Decorate produces higher reductions in er-
ror than the other active-learning methods. Depend-
ing on the dataset, Active-Decorate produces a
wide range of improvements, from moderate (4.16%
on credit-g) to high (70.68% on vowel). On average,
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Figure 1. Comparing di�erent active learners on Soybean.

Active-Decorate produces a 21.15% reduction in
error.

5. Additional Experiments

5.1. Measures of Utility

There are two main aspects to any Query by Com-
mittee approach. The �rst is the method employed to
construct the committee, and the second is the mea-
sure used to rank the utility of unlabeled examples
given this committee. Thus far, we have only com-
pared di�erent methods for constructing the commit-
tees. Following Abe and Mamitsuka (1998), we ranked
unlabeled examples based on the margin of the com-
mittee's prediction for the example.

An alternate approach is to use an information theo-
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Figure 2. Ceiling e�ect in learning on Breast-W.

Table 2. Top 20% percent error reduction over Decorate

Dataset QBag QBoost ActiveDecorate
Soybean 30.50 34.17 45.84
Vowel 22.65 42.09 70.68
Statlog 11.31 10.34 11.43
Hepatitis 12.13 16.68 19.31
Primary 3.23 0.43 5.74
Heart-c 15.40 19.40 12.56
Sonar 1.88 8.09 16.47
Heart-h 16.22 14.68 12.14
Glass 10.58 16.88 15.83
Diabetes 8.68 4.01 5.94
Lymph 19.65 28.51 18.84
Labor -2.61 12.55 36.33
Iris 22.78 1.22 22.53
Credit-g 9.43 6.71 4.16
Breast-w 15.12 18.89 19.51
Mean 13.13 15.64 21.15
No. of Wins 4 3 8

retic measure such as Jensen-Shannon (JS) divergence
to evaluate the potential utility of examples (Cover &
Thomas, 1991). JS-divergence is a measure of similar-
ity between probability distributions (Gomez-Lopera
et al., 2000). We can utilize this measure if the in-
dividual classi�ers in the committee provide us with
class membership probabilities, rather than just the
most likely class. If Pi(x) is the class probability dis-
tribution given by the i-th classi�er for the example x
(which we will abbreviate as Pi) we can then compute
the JS-divergence of an ensemble of size n as:

JS(P1; P2; : : : ; Pn) = H(

nX
i=1

wiPi)�

nX
i=1

wiH(Pi)

where wi is the vote weight of the i-th classi�er in the
ensemble;1 and H(P ) is the Shannon entropy of the

1
Decorate uses uniform vote weights, which are nor-

distribution P = fpj ; j = 1; : : : ;Kg de�ned as:

H(P ) = �

KX
j=1

pj log pj

Higher values for JS-divergence indicate a greater
spread in the predicted class probability distributions,
and it is zero if and only if the distributions are identi-
cal. We implemented a version of Active-Decorate
that selects the unlabeled examples with the highest
JS-divergence. A similar measure was used for ac-
tive learning for text categorization by McCallum and
Nigam (1998). This measure incorporates more in-
formation about the predicted class distribution than
using margins, and hence could result in the selection
of more informative examples.

To test the e�ectiveness of using JS-divergence, we ran
experiments comparing it to using the margin mea-
sure. The experiments were conducted as described
in Section 4.1. Table 3 summarizes the results of the
comparison of the two measures. All the error reduc-
tions are signi�cant (p < 0:05), so we only present
the better of the two columns in bold font. In terms
of data utilization, the methods seem equally matched;
JS-divergence performs better than margins on 8 of the
15 datasets. However, on the error reduction metric,
using margins outperforms JS-divergence on 11 of the
datasets. The results also show, that there are datasets
on which JS-divergence and margins achieve the tar-
get error rate with comparable number of examples,
but the error reduction produced by margins is higher.
Figure 3 clearly demonstrates this phenomenon.
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Figure 3. Comparing measures of utility: JS Divergence vs
Margins on Vowel.

Note that while Active-Decorate using either mea-

malized to sum to one.



Table 3. Comparing measures of utility: Data utilization
and top 20% error reduction with respect to Decorate.

Data Utilization %Error Reduction
Dataset Margin JS Div. Margin JS Div.
Soybean 144(0.29) 369(0.75) 45.84 18.67
Vowel 477(0.57) 525(0.62) 70.68 63.26
Statlog 46(0.57) 76(0.94) 11.43 11.52
Hepatitis 23(0.59) 19(0.49) 19.31 15.90
Primary 164(0.69) 212(0.89) 5.74 3.84
Heart-c 36(0.72) 28(0.56) 12.56 13.97
Sonar 99(0.79) 94(0.75) 16.47 16.71
Heart-h 39(0.80) 38(0.78) 12.14 10.81
Glass 100(0.85) 118(1.00) 15.83 10.46
Diabetes 201(0.86) 150(0.64) 5.94 5.03
Lymph 24(0.89) 20(0.74) 18.84 12.18
Labor 12(0.92) 10(0.77) 36.33 29.77
Iris 30(0.94) 41(1.28) 22.53 23.01
Credit-g 495(0.99) 330(0.66) 4.16 3.91
Breast-w 39(1.30) 45(1.50) 19.51 19.20
Mean 0.78 0.83 21.15 17.22
# Wins 7 8 11 4

sure of utility produces substantial error reductions, in
general using margins produces greater improvements.
Using the JS-divergence measure tends to select ex-
amples that would reduce the uncertainty of the pre-
dicted class membership probabilities, which helps to
improve classi�cation accuracy. On the other hand,
using margins focuses more directly on determining
the decision boundary. This may account for its bet-
ter performance. For making cost-sensitive decisions,
it is very useful to have accurate class probability es-
timates (Saar-Tsechansky & Provost, 2001). In such
cases, we conjecture that using JS-divergence could be
a more e�ective approach.

5.2. Ensemble Diversity

By exploiting arti�cial examples, the Decorate al-
gorithm forces the construction of a diverse set of hy-
potheses that are consistent with the training data.
We believe that this ensemble diversity is the key to
the success of Active-Decorate. We ran additional
experiments to verify thatDecorate does indeed pro-
duce more diverse committees than Bagging or Ada-
Boost. As in (Melville & Mooney, 2004), we use the
disagreement of ensemble members with the ensem-
ble's prediction as a measure of diversity. More pre-
cisely, if Ci(x) is the prediction of the i-th classi�er
for the label of x; C�(x) is the prediction of the entire
ensemble, then the diversity of the i-th classi�er on
example x is given by:

di(x) =

�
0 : if Ci(x) = C�(x)
wi : otherwise

Table 4. Comparing ensemble diversity: Win-loss records.

Number of Training Examples
10 15 20 25 30

Decorate vs Bagging 14-1 14-1 14-1 13-2 13-2
Decorate vs AdaBoost 15-0 14-1 14-1 14-1 14-1

Where wi is the vote weight of the i-th classi�er. To
compute the diversity of an ensemble of size n, on a
set of examples of size m, we average the above term:

1

nm

nX
i=1

mX
j=1

di(xj)

This measure estimates the probability that a classi�er
in an ensemble will disagree with the prediction of the
ensemble as a whole.

The diversity of each ensemble method was evaluated
using 10-fold cross-validation on all 15 datasets. To
test performance on varying amounts of data, each
system was evaluated on the testing data, after train-
ing on increasing subsets of the training data. We
focused on points early on the learning curve, where
we expect active learning to be most e�ective. The re-
sults (Table 4) are summarized in terms of signi�cant
win/loss records; where a win or loss is only counted
if the di�erence in diversity (not accuracy) is deter-
mined to be signi�cant at the 0.05 level by a paired
t-test. These results con�rm that in most cases Dec-
orate does indeed produce signi�cantly more diverse
ensembles than Bagging or AdaBoost.

5.3. Committees for Sample Selection vs.

Prediction

All the active learning methods that we have described
use committees to determine which examples to se-
lect. But in addition to using committees for sample
selection, these methods also use the committees for
prediction. So we are not evaluating which method
selects the best queries for the base learner, but which
combination of sample selection and ensemble method
works the best. The fact thatActive-Decorate per-
forms better than QBag may just be testament to the
fact that Decorate performs better than Bagging.
However, we claim that not only does Decorate pro-
duce accurate committees, but the committees pro-
duced are also more e�ective in sample selection. To
verify this, we implemented an alternate version of
Active-Decorate, where at each iteration a com-
mittee constructed by Bagging is used to select the
examples given to Decorate. In this way, we sep-
arate the evaluation of the method used for sample



Table 5. Comparing di�erent ensemble methods for selec-
tion for Active-Decorate: Percentage error reduction over
Decorate.

Dataset Maximum Select w/ Select w/ Select w/
Train Size Bagging AdaBoost Decorate

Soybean 300 18.55 17.27 27.38
Glass 100 6.57 4.72 8.85
Primary 200 0.2 2.46 3.75
Statlog 100 -1.79 -1.18 1.73

selection from the method used for prediction. Simi-
larly, we implemented a version ofActive-Decorate
using AdaBoost to perform the sample selection.

We compared the three methods of sample selection for
Decorate on four of the datasets on which Active-
Decorate exhibited good performance. We gener-
ated learning curves as described in Section 4.1. How-
ever, we did not run the learning curve trials until all
the available training data was exhausted, since the ac-
tive learning methods need fewer examples to achieve
the target error rates.

The error reductions over Decorate averaged across
all the points on the learning curve are presented in
Table 5.2 The signi�cant error reductions are shown
in bold. The table also includes the maximum train-
ing set size, which corresponds to the last point on
the learning curve. The results show that, on 3 of
the 4 datasets, using any of the ensemble sample se-
lection methods in conjunction with Decorate pro-
duces better results than Decorate. Furthermore,
Decorate committees select more informative exam-
ples for training Decorate than the other committee
sample selection methods. These trends are clearly
seen in Figure 4. A more extensive study needs to be
done to add to these preliminary results. It would also
be interesting to run similar experiments, usingDeco-
rate ensembles to pick examples for training Bagging,
AdaBoost, or J48.

6. Related Work

In their QBC approach, Dagan and Engelson (1995)
measure the utility of examples by vote entropy, which
is the entropy of the class distribution, based on the
majority votes of each committee member. McCal-
lum and Nigam (1998) showed that vote entropy does
not perform as well as JS-divergence for pool-based
sample selection. Another recently developed e�ective
committee-based active learner is Co-Testing (Muslea
et al., 2000); however, it requires two redundant views

2These results are not directly comparable to those in
Table 2.
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Figure 4. Comparing di�erent ensembles methods for se-
lecting samples for Decorate on Soybean.

of the data. Since most data sets do not have re-
dundant views, Co-Testing has rather limited appli-
cability. Another general approach to sample selec-
tion is uncertainty sampling (Lewis & Catlett, 1994);
however, this approach requires a learner that accu-
rately estimates the uncertainty of its decisions, and
tends to over-sample the boundaries of its current
incomplete hypothesis (Cohn et al., 1994). Finally,
expected-error reduction methods for active learning
(Cohn et al., 1996; Roy & McCallum, 2001; Zhu et al.,
2003) attempt to statistically select training exam-
ples that are expected to minimize error on the ac-
tual test distribution. This approach has the advan-
tage of avoiding the selection of outliers whose labeling
will not improve accuracy on typical examples. How-
ever, this method is computationally intense, and must
be carefully tailored to a speci�c learning algorithm
(e.g. naive Bayes); and hence, cannot be used to se-
lect examples for an arbitrary learner. Active meta-
learners like Query by Bagging/Boosting and Active-
Decorate have the advantage of being able to select
queries to improve any learner appropriate for a given
domain.

7. Conclusion

Active-Decorate is a simple, yet e�ective approach
to active learning. Experimental results show that,
in general, this approach leads to more e�ective sam-
ple selection than Query by Bagging and Query by
Boosting. On average, Active-Decorate requires
78% of the number of training examples required by
Decorate with random sampling. Additional exper-
iments support the hypothesis that for small training
sets Decorate produces more diverse ensembles than



Bagging or AdaBoost. We believe this increased
diversity is the key to Active-Decorate's superior
performance.

Our results also show that using JS-divergence to eval-
uate the utility of examples is less e�ective for improv-
ing classi�cation accuracy than using margins. JS-
divergence may be a better measure when the objec-
tive is improving class probability estimates. This is
an interesting area for future work.
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