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Abstract. One of the potential advantages of multiple classifier sys-
tems is an increased robustness to noise and other imperfections in data.
Previous experiments on classification noise have shown that bagging is
fairly robust but that boosting is quite sensitive. Decorate is a recently
introduced ensemble method that constructs diverse committees using
artificial data. It has been shown to generally outperform both boosting
and bagging when training data is limited. This paper compares the sen-
sitivity of bagging, boosting, and Decorate to three types of imperfect
data: missing features, classification noise, and feature noise. For miss-
ing data, Decorate is the most robust. For classification noise, bagging
and Decorate are both robust, with bagging being slightly better than
Decorate, while boosting is quite sensitive. For feature noise, all of the
ensemble methods increase the resilience of the base classifier.

1 Introduction

In addition to their many other advantages, multiple-classifier systems hold the
promise of developing learning methods that are robust in the presence of im-
perfections in the data; in terms of missing features, and noise in both the class
labels and the features. Noisy training data tends to increase the variance in
the results produced by a given classifier; however, by learning a committee of
hypotheses and combining their decisions, this variance can be reduced. In par-
ticular, variance-reducing methods such as Bagging [2] have been shown to be
robust in the presence of fairly high levels of noise, and can even benefit from
low levels of noise [3].

Bagging is a fairly simple ensemble method which is generally outperformed
by more sophisticated techniques such as AdaBoost [4, 13]. However, Ad-
aBoost has a tendency to overfit when there is significant noise in the training
data, preventing it from learning an effective ensemble [3]. Therefore, there is a
need for a general ensemble meta-learner 1 that is at least as accurate as Ad-
aBoost when there is little or no noise, but is more robust to higher levels of
random error in the training data.

Decorate [9, 10] is a recently introduced ensemble meta-learner that di-
rectly constructs diverse committees by employing specially-constructed artificial
1 An ensemble meta-learner, like Bagging and AdaBoost, takes an arbitary base

learner and uses it to build a more effective committee of hypotheses [17].



training examples. Extensive experiments have demonstrated that Decorate
constructs more accurate diverse ensembles than AdaBoost and Bagging when
training data is limited, and does at least as well as AdaBoost when the train-
ing set is relatively large. By using artificial training data to construct diverse
committees and prevent over-fitting, Decorate has been shown to be a very
effective ensemble meta-learner on a wide variety of data sets.

This paper explores the resilience of Decorate to the various forms of im-
perfections in data. In our experiments, the training data is corrupted with
missing features, and random errors in the values of both the category and the
features. Results on a variety of UCI data demonstrate that, in general, Dec-
orate continues to improve on the accuracy of the base learner, despite the
presence of each of the three forms of imperfections. Furthermore, Decorate
is clearly more robust to missing features than the other ensemble methods.

2 The Decorate Algorithm

This section summarizes the Decorate algorithm; for further details see [9, 10].
The approach is motivated by the fact that combining the outputs of multiple
classifiers is only useful if they disagree on some inputs [6]. We refer to the
amount of disagreement as the diversity of the ensemble, which we measure
as the probability that a random ensemble member’s prediction on a random
example will disagree with the prediction of the complete ensemble.

Decorate was designed to use additional artificially-generated training data
in order to generate highly diverse ensembles. An ensemble is generated itera-
tively, learning one new classifier at each iteration and adding it to the current
ensemble. The ensemble is initialized with the classifier trained on the given
data. The classifiers in each successive iteration are trained on the original data
and also on some artificial data. In each iteration, a specified number of artificial
training examples are generated based on a simple model of the data distribu-
tion. The category labels for these artificially generated training examples are
chosen so as to differ maximally from the current ensemble’s predictions. We
refer to this artificial training set as the diversity data. We train a new classifier
on the union of the original training data and the diversity data. If adding this
new classifier to the current ensemble increases the ensemble training error, then
this classifier is rejected, else it is added to the current ensemble. This process
it repeated until the desired committee size is reached or a maximum number of
iterations is exceeded.

The artificial data is constructed by randomly generating examples using an
approximation of the training data distribution. For numeric attributes, a Gaus-
sian distribution is determined by estimating the mean and standard deviation
of the training set. For nominal attributes, the probability of occurrence of each
distinct value is determined using Laplace estimates from the training data. Ex-
amples are then generated by randomly picking values for each feature based on
these distributions, assuming attribute independence. In each iteration, the arti-
ficially generated examples are labeled based on the current ensemble. Given an



example, we compute the class membership probabilities predicted by the cur-
rent ensemble, replacing zero probabilities with a small ε for smoothing. Labels
are then sampled from this distribution, such that the probability of selecting a
label is inversely proportional to the current ensemble’s predictions.

3 Experimental Evaluation

3.1 Methodology

Three sets of experiments were conducted in order to compare the performance
of AdaBoost, Bagging, Decorate, and the base classifier, J48 2, under varying
amounts of three types of imperfections in the data:

1. Missing features: To introduce N% missing features to a data set of D
instances, each of which has F features (excluding the class label), we select
randomly with replacement N ·D·F

100 instances and for each of them delete the
value of a randomly chosen feature. Missing features were introduced to both
the training and testing sets.

2. Classification noise: To introduce N% classification noise to a data set
of D instances, we randomly select N ·D

100 instances with replacement and
change their class labels to one of the other values chosen randomly with
equal probability. Classification noise was introduced only to the training
set and not to the test set.

3. Feature noise: To introduce N% feature noise to a data set of D instances,
each of which has F features (excluding the class label), we randomly select
with replacement N ·D·F

100 instances and for each of them we change the value
of a randomly selected feature. For nominal features, the new value is chosen
randomly with equal probability from the set of all possible values. For
numeric features, the new value is generated from a Normal distribution
defined by the mean and the standard deviation of the given feature, which
are estimated from the data set. Feature noise was introduced to both the
training and testing sets.

In each set of experiments, AdaBoost, Bagging, Decorate, and J48 were
compared on 11 UCI data sets using the Weka implementations of these methods
[17]. Table 1 presents some statistics about the data sets. The target ensemble
size of the first three methods was set to 15. In the case of Decorate, this
size is only an upper bound on the size of the ensemble, and the algorithm
may terminate with a smaller ensemble if the number of iterations exceeds the
maximum limit. As in [9], this maximum limit was set to 50 iterations, and the
number of artificially generated examples was equal to the training set size.

To ascertain that no ensemble method was being disadvantaged by the small
ensemble size, we ran additional experiments on some datasets with the ensemble
size set to 100. The trends of the results are similar to those with ensembles of
2 J48 is a Java implementation of C4.5 [12] introduced in [17].



size 15. Details of these experiments are omitted here, but can be found in the
extended version of this paper [11].

For each set of experiments, the performance of each of the learners was
evaluated at increasing noise levels from 0% to 40% at 5% intervals using 10
complete 10-fold cross validations. In each 10-fold cross validation the data is
partitioned into 10 subsets of equal size and the results are averaged over 10 runs.
In each run, a distinct subset is used for testing, while the remaining instances
are provided as training data.

To compare two learning algorithms across all domains we employ the statis-
tics used in [16], namely the significant win/draw/loss record and the geometric
mean error ratio. The win/draw/loss record presents three values, the number
of data sets for which algorithm A obtained better, equal, or worse performance
than algorithm B with respect to classification accuracy. A win or loss is only
counted if the difference in accuracy is determined to be significant at the 0.05
level by a paired t-test.

The geometric mean (GM) error ratio is defined as n

√∏n
i=1

EA

EB
, where EA

and EB are the mean errors of algorithm A and B on the same domain. If the
geometric mean error ratio is less than one it implies that algorithm A performs
better than B, and vice versa. We compute error ratios to capture the degree to
which algorithms out-perform each other in win or loss outcomes.

Table 1. Summary of Data Sets

Name Cases Classes Attributes
Numeric Nominal

autos 205 6 15 10
balance-scale 625 3 4 –
breast-w 699 2 9 –
colic 368 2 10 12
credit-a 690 2 6 9
glass 214 6 9 –
heart-c 303 2 8 5
hepatitis 155 2 6 13
iris 150 3 4 –
labor 57 2 8 8
lymph 148 4 – 18

3.2 Results

In this section, we only present the statistics summarized over all 11 datasets.
For detailed tables of results, see the extended version of this paper [11].



Missing Features: The results of running the algorithms when missing features
are introduced, are presented in Tables 2–4. Each table compares the accuracy
of Decorate versus another algorithm for increasing percentages of missing
features.

These results demonstrate that Decorate is fairly robust to missing fea-
tures, consistently beating the base learner, J48, at all noise levels (Table 2).
In fact, when the amount of missing features is 20% or higher, Decorate pro-
duces statistically significant wins over J48 on all datasets. The amount of error
reduction produced by using Decorate is also considerable, as is shown by the
mean error ratios.

For this kind of imperfection in the data, in general, all of the ensemble
methods produce some increase in accuracy over the base learner. However, the
improvements brought about by using Decorate are higher than those caused
by both Bagging and AdaBoost. The amount of error reduction achieved by
Decorate also increases with greater amounts of missing features; as is clearly
demonstrated by the GM error ratios.

Figure 1(a) shows the results on a dataset that clearly demonstrates Deco-
rate’s superior performance at all levels of missing features. In Figure 1(b), we
see a dataset on which AdaBoost has the best performance when there are no
missing features; but with increasing amounts of missing features, both Bagging
and Decorate outperform it.

The superior performance of Decorate could be attributed to the fact that
it adds artificial examples to the training set. These artificial examples do not
contain any missing features, and are generated based on the distributions of
features estimated over the visible (non-missing) values. A thorough analysis of
how using artificial examples can increase robustness to missing features is an
important subject for future research.
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Table 2. Missing Features: Decorate vs J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 8/3/0 10/1/0 10/1/0 10/1/0 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0
GM Error Ratio 0.8286 0.7882 0.7877 0.7815 0.7921 0.8039 0.8004 0.8095 0.8047

Table 3. Missing Features: Decorate vs Bagging

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 2/7/2 2/8/1 4/7/0 3/7/1 5/5/1 4/7/0 4/7/0 5/5/1 8/3/0
GM Error Ratio 0.9520 0.9298 0.9201 0.9177 0.9041 0.9083 0.9085 0.9150 0.8882

Table 4. Missing Features: Decorate vs AdaBoost

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 4/4/3 5/4/2 6/4/1 4/6/1 4/7/0 6/5/0 8/3/0 6/5/0 8/3/0
GM Error Ratio 0.9534 0.9382 0.9197 0.9024 0.9109 0.8982 0.8827 0.8968 0.8876

Classification Noise: The comparison of each ensemble method with the base
learner, in the presence of classification noise are summarized in Tables 5-7. The
tables provide summary statistics, as described above, for each of the noise levels
considered.

The win/draw/loss records indicate that, both Bagging and Decorate con-
sistently outperform the base learner on most of the datasets at almost all noise
levels; demonstrating that both are quite robust to classification noise. In the
range of 10-35% of classification noise, Bagging performs a little better than
Decorate, as is seen from the error ratios. This is because, occasionally, the
addition of noise helps Bagging, as was also observed in [3].

Unlike, Bagging and Decorate, AdaBoost is very sensitive to noise in
classifications. Though AdaBoost significantly outperforms J48 on 7 of the 11
datasets in the absence of noise, its performance degrades rapidly at noise levels
as low as 10%. With 35-40% noise, AdaBoost performs significantly worse
that the base learner on 7 of the datasets. Our results on the performance of
AdaBoost agree with previously published studies [3, 1, 7]. As pointed out in
these studies, AdaBoost degrades in performance because it tends to place a
lot of weight on the noisy examples.

Figure 2(a) shows a dataset on which Decorate has a clear advantage over
other methods, at all levels of noise. Figure 2(b) presents a dataset on which
Bagging outperforms the other methods at most noise levels. This figure also
clearly demonstrates how rapidly the accuracy of AdaBoost can drop below
that of the base learner. These results confirm that, in domains with noise in
classifications, it is beneficial to use Decorate or Bagging, but detrimental to
apply AdaBoost.



Table 5. Class Noise: Decorate vs J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 8/3/0 7/4/0 8/3/0 8/1/2 8/1/2 6/3/2 6/3/2 7/2/2 8/1/2
GM Error Ratio 0.8286 0.8398 0.8633 0.8734 0.8809 0.8960 0.9121 0.9229 0.8995

Table 6. Class Noise: Bagging vs J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 7/4/0 9/2/0 9/2/0 9/2/0 8/3/0 7/4/0 8/2/1 7/3/1 7/3/1
GM Error Ratio 0.8704 0.8687 0.8526 0.8508 0.8443 0.8719 0.8867 0.8972 0.8995

Table 7. Class Noise: AdaBoost vs J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 7/3/1 6/1/4 2/4/5 1/5/5 1/4/6 2/2/7 1/4/6 1/3/7 1/3/7
GM Error Ratio 0.8691 0.9930 1.0984 1.1604 1.2322 1.2242 1.2431 1.2120 1.1989

Feature Noise: The results of running the algorithms with noise in the features
are presented in Tables 8–10. Each table compares the accuracy of each ensemble
method versus J48 for increasing amounts of feature noise.

In most cases, all ensemble methods improve on the accuracy of the base
learner, at all levels of feature noise. Bagging performs a little better than
the other methods, in terms of significant wins according to the win/draw/loss
record. In general, all systems degrade in performance with added feature noise.
The drop in accuracy of the ensemble methods seems to mirror that of the base
learner, as can be seen in Figure 3. The performance of the ensemble methods
seems to be tied to how well the base learner deals with feature noise.

4 Related Work

Several previous studies have focused on exploring the performance of various
ensemble methods in the presence of noise. A thorough comparison of Bagging,
AdaBoost, and Randomization (a method for building a committee of decision
trees, which randomly determine the split at each internal tree node) is presented
in [3]. This study concludes that while AdaBoost outperforms Bagging and
Randomization in settings where there is no noise, it performs significantly worse
when classification noise is introduced.

Other studies have reached similar conclusions about AdaBoost [1, 7], and
several variations of AdaBoost have been developed to address this issue. For
example, Kalai and Servedio [5] present a new boosting algorithm and prove
that it can attain arbitrary accuracy when classification noise is present. An-
other algorithm, Smooth Boosting, that is proven to tolerate a combination of
classification and feature noise is presented in [14]. McDonald et al. [8] compare
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AdaBoost to two other boosting algorithms—LogitBoost and BrownBoost—
and conclude that BrownBoost is quite robust to noise. In an earlier study an
extension to BrownBoost for multi-class problems was presented and shown em-
pirically to outperform AdaBoost on noisy data [7]. However, BrownBoost’s
drawback is that it requires a time-out parameter to be set, which can be done
only if the user can estimate the level of noise.

5 Future Work

Noise in training data chiefly contributes to an increase in the error due to
variance of the base learner; and hence, variance-reduction techniques would
be ideal to combat such noise. Bagging is a very effective variance reduction
method; whereas AdaBoost is primarily a bias reduction technique, though
empirically it has shows to produce some reduction in variance as well [16]. In
general, Decorate also produces significantly more accurate classifiers than



Table 8. Feature Noise: Decorate vs J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 8/3/0 7/4/0 7/4/0 8/3/0 7/3/1 7/4/0 6/5/0 7/4/0 6/5/0
GM Error Ratio 0.8286 0.8335 0.8434 0.8329 0.8593 0.8554 0.8690 0.8723 0.8782

Table 9. Feature Noise: Bagging vs. J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 7/4/0 10/1/0 10/1/0 10/1/0 10/1/0 8/3/0 10/1/0 10/1/0 10/1/0
GM Error Ratio 0.8704 0.8586 0.8450 0.8496 0.8473 0.8627 0.8634 0.8614 0.8661

Table 10. Feature Noise: AdaBoost vs. J48

Noise Level % 0 5 10 15 20 25 30 35 40

Sig. W/D/L 7/3/1 7/2/2 8/2/1 7/3/1 8/1/2 8/1/2 8/2/1 7/4/0 8/2/1
GM Error Ratio 0.8691 0.8449 0.8575 0.8455 0.8463 0.8564 0.8830 0.8900 0.8750

the base learner. We are currently investigating whether this improvement in
accuracy is mainly due to a reduction in bias or variance. This should lend some
more insight into Decorate’s resilience to imperfections in data.

In our study, all the ensemble methods were used to generate committees of
size 15. It may be beneficial to generate larger ensembles, so that the difference
in performance between the systems is more pronounced.

An interesting avenue for future work would be to compare the performance
of Decorate and Bagging with the new boosting algorithms mentioned in Sec-
tion 4. Another interesting subject for future experimentation is testing how the
ensemble methods discussed in this study compare to noise elimination tech-
niques such as the ones presented in [15].

6 Conclusion

This paper evaluates the performance of three ensemble methods, Bagging, Ad-
aBoost and Decorate, in the presence of different kinds of imperfections in
the data. Experiments using J48 as the base learner, show that in the case of
missing features Decorate significantly outperforms the other approaches. In
the case of classification noise, both Decorate and Bagging are effective at de-
creasing the error of the base learner; whereas AdaBoost degrades rapidly in
performance, often performing worse than J48. In general, Bagging performs the
best at combating high amounts of classification noise. In the presence of noise
in the features, all ensemble methods produce consistent improvements over the
base learner.
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