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ABSTRACT 

It is commonly agreed that accounts receivable (AR) can be a 

source of financial difficulty for firms when they are not 

efficiently managed and are underperforming.  Experience across 

multiple industries shows that effective management of AR and 

overall financial performance of firms are positively correlated. In 

this paper we address the problem of reducing outstanding 

receivables through improvements in the collections strategy. 

Specifically, we demonstrate how supervised learning can be used 

to build models for predicting the payment outcomes of newly-

created invoices, thus enabling customized collection actions 

tailored for each invoice or customer. Our models can predict with 

high accuracy if an invoice will be paid on time or not and can 

provide estimates of the magnitude of the delay.  We illustrate our 

techniques in the context of transaction data from multiple firms.   

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: correlation and regression 

analysis, experimental design. 

I.3 [Simulation and Modeling]: Applications. 

J.1 [Administrative Data Processing]: Business, Financial. 

General Terms 
Design, Economics, Experimentation, Performance. 

Keywords 
Accounts Receivable, Payment Collection, Order to Cash,  

Invoice to Cash, Predictive Modeling, Knowledge Discovery. 

1. INTRODUCTION 
The Order-to-Cash (O2C) process describes a composite business 

process that comprises the necessary steps to fulfill an order for a 

good or service, from order entry to payment receipt. While the 

number and nature of such steps may vary depending on the type 

and size of the firm, most O2C processes follow a similar high-

level workflow as illustrated in Figure 1. 
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Figure 1. Typical order-to-cash process 

 

In this paper we concentrate on the two highlighted steps of 

Figure 1. These steps constitute the core of the collections 

activities and deal with account prioritization, customer contact 

activities, collection calls, escalation, and resolution of disputes. 

Most often, these steps are processed manually and hence, slow, 

expensive, and inaccurate, despite their importance to the 

business.  Moreover, the collection actions are typically generic 

and do not take into account customer specifics, e.g., all 

customers are contacted at fixed intervals, even though some have 

always paid on time; while it is generally true that the later a 

customer is contacted the less likely the invoices will get paid on 

time, repeated contacting of “good” customers may lead to lower 

customer satisfaction.  Such inefficiencies in current practices 

lead to significant delays in AR collections or even to failure to 

collect before write-off deadlines. 

The effectiveness of AR collections can be significantly improved 

through better management of the collection steps. For instance, 

taking preemptive actions on invoices that are likely to become 

delinquent can drive down the collection time.  Furthermore, by 

prioritizing delinquent invoices for actions based on the expected 

time of payment, one can optimize the use of collections 

resources. In this paper we focus on the task of predicting the 

payment outcomes of newly-created invoices, thus enabling more 

effective collections management. 

2. INVOICE OUTCOME PREDICTION 
There are many metrics used to measure the collection 

effectiveness of a firm [1]. For instance, Average Days Delinquent 

measures the average time from invoice due date to the paid date, 

i.e., the average days invoices are overdue. A related metric, Days 
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Sales Outstanding (DSO) expresses the average time in days that 

receivables are outstanding, computed as: 

 

Most commonly used metrics are functions of the time taken to 

collect on invoices. If one can predict the outcome of an invoice, 

one can use this information to drive the collection process so as 

to improve on a desired collection metric.  For instance, if one can 

identify invoices that are likely to be delinquent at the time of 

creation, one can attempt to reduce the time to collection by pro-

actively trying to collect on these invoices. Typically, collections 

departments wait until invoices are delinquent to start taking 

collection actions, such as sending out reminders or making phone 

calls. However, one could significantly benefit from preemptively 

contacting potentially delinquent accounts. Furthermore, even 

after an invoice is past due, it is beneficial to know which invoices 

are likely to be paid sooner than later, if no action is taken. Given 

that resources for collections activities are often limited, one may 

choose to prioritize invoices based on estimating how late a 

payment will be; e.g., it makes more business sense to contact a 

customer who is likely to pay 90 days late, than one who would 

pay within 30 days without contact. 

We formulate the invoice outcome prediction task as a supervised 

learning problem: given instances of past invoices and their 

outcomes, build a model that can predict when a newly-created 

invoice will be paid, if no action is taken. In particular, each 

instance is classified into one of five classes: on time, 1-30 days 

late, 31-60 days late, 61-90 days late, and more than 90 days late 

(or 90+ days late). Data instances correspond to features 

representing invoices, which are described in detail below. 

This formulation corresponds to using the Average Days 

Delinquent as the collections performance metric. However, if the 

objective is to maximize a different performance metric, that can 

be done by using an alternative target (class) variable that is 

correlated with this metric. For example, one may use the 

Collection Effectiveness Index (CEI), which compares what was 

collected in a given period to what was available to collect, 

defined as: 

 

In this case, invoices can be labeled based on the actual amounts 

collected in a specified time period. 

2.1 Data Preprocessing 
The analysis in this paper is done on invoice records for four 

firms, including two fortune 500 companies.  Three of these firms 

are competitive in the markets for supplying high-tech equipments 

for telecommunication, networking, and IT services.  The fourth 

firm specializes in online advertising placement and scheduling 

services. The summary of invoice records is presented in Table 1. 

These data sets cover invoices created from March 2004 to 

February 2005. When learning from these data sets, we 

differentiate invoices of first time customers from those of 

returning customers, because their payment behaviors are very 

different, moreover, there is additional historical information 

available for invoices of returning customers.  In this paper, we 

use term first-time invoices to refer to the invoices from first-time 

customers. Likewise, returning invoices are invoices from 

returning customers.  Table 1 shows that the majority of invoices 

of three firms (A, B and D) are returning invoices while C has the 

majority of its invoices billed to first time customers. 

 

Table 1. Summary of data sets 

Firm # of 

invoices 

# of returning 

invoices (%) 

# of first-time 

invoices 

A 40908 32871 (80.35) 8037 

B 109589 94047 (85.82) 15542 

C 22701 5564 (24.51) 17137 

D 8474 5873 (69.31) 2601 

 

Our input data consists of a set of invoices at the end of the 

collections cycle. Each invoice is described by 54 features that 

capture information such as order details, terms and conditions, 

sales representative information, etc. We begin by eliminating 

features that are specific to an invoice, such as invoice IDs. We 

then remove leakage variables – features that provide information 

about the class label that one would not have at the time of 

creation of an invoice, such as invoice closing date and number of 

touches.  For ease of modeling, we also exclude categorical 

features that have too many distinct values, such as customer 

groups and customer names. Finally, we filter out features that 

have too many missing values or have unique values, such as 

invoice types.  This leaves us with only three meaningful features, 

named as invoice-level features that represent an invoice (see 

Table 2): invoice base amount, payment terms, and invoice 

category.  Given the number of days delinquent, computed based 

on invoice close date and due date, each invoice/instance is 

labeled with one of the five class labels: on time, 1-30 days late, 

31-60 days late, 61-90 days late, and more than 90 days late (or 

90+ days late). 

The three invoice-level features are insufficient for effective 

modeling. However, a large number of invoices are for returning 

customers, which is especially true for firms with large accounts 

such as A and B, where more than 80% of the invoices are for 

returning customers. Based on this observation, we develop 

additional features that (a) capture the transaction history of a 

customer, e.g., the percentage of invoices paid late in the past; and 

(b) reflect the current status of the customer's accounts, e.g. the 

sum of base amounts of all invoices currently outstanding. Table 2 

lists all these historical and aggregate features that are generated 

(features numbered 4-17). These features provide a significant 

amount of information that can be leveraged for predicting the 

outcome on a new invoice. However, such information is not 

available for first-time customers, or for the first invoices of 

customers. Therefore, in this paper we focus primarily on building 

predictive models for the invoices of returning customers. 

However, for completeness, in Section 3.3 we also discuss the 

task of modeling on invoices without history. 
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Table 2. Summary of features 

No. Feature Description 

1. Invoice base amount Base amount of a invoice 

2. Payment term The deadline of payment due 

3. Category Indicator of whether invoice is under dispute 

or not 

4. Number of total paid 

invoices 

Number of paid invoices prior to the creation 

date of a new invoice of a customer. 

5. Number of invoices 

that were paid ate 

Number of invoices which were paid late 

prior to the creation date of a new invoice of 

a customer 

6. Ratio of paid 

invoices that were 

late 

Ratio of 5. over 4. 

7. Sum of the base 

amount of total paid 

invoices 

The sum of the base amount from all the 

paid invoices prior to a new invoice for a 

customer 

8. Sum of the base 

amount of invoices 

that were paid late 

The sum of the base amount from all the 

paid invoices which were late prior to a new 

invoice for a customer. 

9. Ratio of sum of paid 

base amount that 

were late 

Ratio of 8. over 7. 

10. Average days late of 

paid invoices being 

late. 

Average days late of all paid invoices that 

were late prior to a new invoice for a 

customer 

11. Number of total 

outstanding invoices 

Number of the outstanding invoices prior to 

the creation date of a new invoice of a 

customer. 

12. Number of 

outstanding invoices 

that were already late 

Number of the outstanding invoices which 

were late prior to the creation date of a new 

invoice of a customer 

13. Ratio of outstanding 

invoices that were 

late 

Ratio of 12. over 11. 

14. Sum of the base 

amount of total 

outstanding invoices 

The sum of the base amount from all the 

outstanding invoices prior to a new invoice 

for a customer 

15. Sum of the base 

amount of 

outstanding invoices 

that were late 

The sum of the base amount from all the 

outstanding invoices which were late prior to 

a new invoice for a customer. 

16. Ratio of sum of 

outstanding base 

amount that were late 

Ratio of 15. over 14. 

17. Average days late of 

outstanding invoices 

being late. 

Average days late of all outstanding invoices 

that were late prior to a new invoice for a 

customer 

 

3. APPROACH 
The task we formulated is a typical supervised classification 

problem: given a set of data instances (invoices) represented by a 

set of features and class labels, build a model that can classify a 

new instance into one of five target classes – on time, 1-30 days 

late, 31-60 days late, 61-90 days late, and more than 90 (or 90+) 

days late.  In the following sections we will discuss the different 

settings for invoice prediction we studied. 

In pilot studies, we compared the following classification 

algorithms for our domain – C4.5 decision tree induction [2], 

Naïve Bayes [3], and the PART algorithm [4] (described below). 

Among these algorithms, PART performed the best in terms of 

classification accuracy. PART is a rule learner that uses a 

separate-and-conquer approach. It builds a rule, removes the 

instances that it covers, and repeats this process recursively on the 

remaining instances until there are none left. To produce each 

rule, PART builds a partial pruned decision trees in a manner 

similar to C4.5, and the leaf with the largest coverage is made into 

the rule while the rest of the tree is discarded. To avoid over-

fitting in our experiments, we only consider rules that cover a 

minimum of 100 instances. 

In addition to learning accurate classifiers, PART is a good choice 

for our domain, because it can handle missing values, nominal 

values, and it produces comprehensible models in the form of 

human-readable decision lists. For all experiments described 

below, we present results from using the PART algorithm. 

Experiments were run using 10-fold cross validation, and 

classification accuracy is reported as the performance metric. 

Where relevant, we report the accuracy in predicting a specific 

class. As a point of reference, we also report the accuracy of the 

majority-class predictor, i.e., a classifier that always predicts the 

class most represented in the training data. 

3.1 Using Historical Data 
In Section 2.1 we describe the construction of historical and 

aggregate features. We conjecture that these features provide a 

significant amount of information beyond the simple invoice-level 

features. We validate this hypothesis by comparing models built 

using only invoice-level features to models built using both 

invoice and historical features. Experiments were conducted using 

only data for invoices of returning customers, because historical 

features are only meaningful for these invoices.   

The prediction results are summarized in Table 3. We observe that 

even with just the three invoice-level features we can predict the 

payment outcome of an invoice more accurately than predicting 

the majority class. However, this improvement is marginal in 

some cases, as in B and D, where the difference in accuracy is less 

than 1 percent. Furthermore, incorporating historical features into 

the data gives rise to a substantial increase in prediction 

accuracies for all four firms. We observe improvements ranging 

from 4 (B) to 20 percent (C). Overall, the model accuracies are 

significantly better than the baseline. As such, using these 

predictions to drive workflow of collections is likely to perform a 

lot better than current practices that treat all invoices equally. We 

are currently designing a controlled live experiment to 

demonstrate this. 

 

Table 3. Using historic date to predict returning invoice 

payment behavior 

Firm Feature Category Accuracy 
Majority Class 

Accuracy 

Invoice 68.24 
A 

Invoice+History 81.38 
60.22 

Invoice 84.72 
B 

Invoice+History 88.28 
84.58 

Invoice 49.68 
C 

Invoice+History 66.46 
46.10 

Invoice 58.79 
D 

Invoice+History 70.87 
57.82 

 

3.2 Cost-sensitive Learning 
In accounts receivable collection, the main reason for categorizing 

the payment behavior of invoices is to be able to customize 
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monitoring and collection activities according to their past due 

behavior. One of the critical measurements of collection 

performance is Average Days Delinquent. As such, we have 

focused our modeling on predicting the expected time in payment. 

However, as discussed in Section 2, there are other Key 

Performance Indicators (KPIs) that are often used to measure 

collection success. For instance, several of our firms have a KPI 

objective to keep the number of invoices that are more than 90 

days overdue below a specified limit. These invoices are 

potentially bad debt accounts, which require special decisions and 

set of actions to collect payments for these accounts.  If this set of 

invoices can be identified at an early stage of the lifecycle of the 

invoices, one can preemptively deal with potentially bad debt 

accounts before they turn into debt or even get written off.   

To attain this objective we build models that are focused on being 

able to predict accurately for the 90+ class. By default, 

classification algorithms assume that all classes are equally 

important. However, the penalty for predicting an invoice will be 

paid on time when in fact it will more than 90 days overdue, is 

usually higher than the reverse. This task is further compounded 

by the fact that these high-risk invoices are under-represented in 

the data. This can be seen in the distribution of invoices for Firm 

A in Figure 2, where the total number of 90+ invoices is only 3% 

of the entire data set.  The data for the three other firms show a 

similar imbalance in the data.  
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Figure 2. Invoice distribution of Firm A 

 

To address the different misclassifications costs, we use instance 

re-weighting, which is a common approach in cost-sensitive 

learning. As input, we provide a misclassification cost matrix, 

such as the one shown in the second column of Table 4. Each row 

and each column corresponds to target classes. Each cell 

corresponds to the cost of misclassifying the row class as the 

column class. The diagonal corresponds to correct classifications 

and hence are all zero. By default, all costs, other than the 

diagonal, are set to one.  Instances belonging to particular class 

are re-weighted proportionally to the sum of its misclassification 

costs. 

Table 4 reports our results on the four firms for one such cost 

matrix. We present both the overall accuracy, as well the true 

positive (TP) rate of the 90+ class. The results show that instance 

re-weighting is a very effective way of dealing with the high class 

imbalance in this data – we can more than double the TP rate of 

the 90+ class without much loss to overall accuracy as is seen for 

Firm B. 

 

Table 4. Cost sensitive prediction accuracy for four firms.  The 

standard cost matrix corresponds to equal misclassification 

costs. 

Firm Cost Matrix Accuracy 90+ Accuracy 

Standard 81.38 73.6 

A 

  a b c d e 

 0 1 1 1 1| a = on time 

 1 0 1 1 1| b = 1-30 days 

 1 1 0 1 1| c = 31-60 days 

 1 1 1 0 1| d = 61-90 days 

 5 4 3 2 0| e = 90+ days 

81.27 79.7 

Standard 88.28 18.6 
B 

Same as A 88.09 42.6 

Standard 64.11 29.6 
C 

Same as A 63.61 45.1 

Standard 62.86 25.6 
D 

Same as A 59.15 60.4 

 

To further explore this, we ran additional experiments using 

different costs matrices. The results for Firm A, for three different 

cost matrices are summarized in Table 5. Results show that by 

increasing the cost of misclassifying the 90+ class, we can get the 

learning algorithm to focus on building classifiers that are more 

accurate at predicting this class. In fact, with high enough 

misclassification costs the classifier can learn to predict the 90+ 

class with more than 95% accuracy. As expected, this comes at a 

trade-off on overall classification accuracy. This trade-off can be 

balanced based on the desired performance objectives.  

 

Table 5. Cost sensitive prediction accuracy for Firm A 

Cost Matrix Accuracy 90+ Accuracy 

  a b c d e 

 0 1 1 1 1| a = on time 

 1 0 1 1 1| b = 1-30 days 

 1 1 0 1 1| c = 31-60 days 

 1 1 1 0 1| d = 61-90 days 

 5 4 3 2 0| e = 90+ days 

81.27 79.7 

 0 1 1 1 1 

 1 0 1 1 1 

 1 1 0 1 1 

 1 1 1 0 1 

 50 4 3 2 0 

78.27 87.9 

 0 1 1 1 1 

 1 0 1 1 1 

 1 1 0 1 1 

 1 1 1 0 1 

 500 4 3 2 0 

62.32 95.7 

 

The cost matrix can be specified based on the actual costs 

associated with the incorrect prediction in practice.  For instance, 

if a 90+ invoice is incorrectly labeled as on time invoice, then the 

associated cost includes the interest loss because of potential 

customer debt. The loss due to misclassification need not always 

be quantified by monetary value.  For instance, if an on-time 

instance is misclassified as a 90+ instance, it is likely that the 

customer will be contacted even before the due date. Apart, from 

the wasted cost of contacting a customer who is going to pay on 
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time, there is the additional risk of damaging the customer 

relationship. The trade-offs between expected loss in revenue and 

customer satisfaction are quite complex and vary from firm to 

firm. In our current modeling, we only concern ourselves with the 

misclassification of 90+ instances into other class labels. 

However, the same methodology can be used to accommodate 

other cost-structure that may represent alternative KPI objectives. 

3.3 Prediction for New Accounts 
As discussed in Section 2.1 we have focused primarily on 

invoices of returning customers, because of the richness of 

historical data that is not present in the invoice-level features. 

However, in some cases it may be possible to get additional 

information on the customers themselves, which may make it 

possible to even build models for invoices of first-time customers. 

Invoice payment risk, to a large extent, may depend on the 

customer’s financial capability and willingness to pay.  Such 

factors may be influenced by customer credit worthiness, 

organizational profile, business market profile, etc.  These factors 

are captured in a set of customer features, such as credit limit, 

segment, and region. For Firm A, such customer-level attributes 

are actually collected and are readily available for modeling. We 

selected 11 such attributes after going through the same feature 

selection mechanism described in Section 2.1. 

For Firm A, we now have three sets of features, namely invoice-

level, historical and customer-level features. We run experiments 

as before, on four combinations of these feature sets, on three 

versions of the Firm A data – returning invoices, first-time invoice 

and all invoices. These results are summarized in Table 6. Results 

show that having customer features boosts prediction accuracy 

from 66% to 72% for first-time invoices. Though this accuracy is 

not as high as when using historical features; it does demonstrate 

that the customer-level features provide some information 

regarding the collectibility of invoices. 

We further investigate the effectiveness of having customer 

features for invoices of returning customers.  As seen in Table 6, 

adding customer features to invoice features improves prediction 

accuracy compared to only using invoice features, even for 

returning customer.  However, if we replace customer features 

with historical features, there is an additional 9% increase in 

accuracy. Clearly, historical features are more effective than 

customer features in determining the outcome of invoices.  

Having all three feature sets together achieves the best prediction 

accuracy; however this is only a marginal improvement over using 

the invoice and historical features. These results motivate building 

separate models for prediction for returning customers; and shows 

that when customer information is available one can also build 

good models for first-time invoices.   

 

 Table 6. Prediction accuracy of Firm A 

Features 

All 

invoices 

(accuracy) 

Returning 

invoices 

(accuracy) 

First-time 

invoices 

(accuracy) 

Invoice 65.95 68.24 66.33 

Invoice+Customer 70.37 72.29 72.24 

Invoice+History 78.57 81.38 N/A 

Invoice+Customer 

+History 

79.80 81.77 N/A 

3.4 Unified Model vs. Firm-specific Models 
For experiments in previous sections we built one model for each 

firm. However, in principle, we could build one unified model 

combining the data from all firms. Building such a model could 

help generalize better and learn behaviors and patterns that are 

common to all firms. Combining the data from all firms would 

also provide a lot more training data, which usually improves 

modeling. To test this conjecture, we build a unified model 

combining all training sets, and present results using this model to 

predict for invoices belonging to each firm. We compare this 

model with training individual models for each firm. 

The results in Table 7 indicate that building separate firm models 

actually achieve better prediction accuracy than using one unified 

model. This seems to suggest that the collection processes and 

behaviors of invoices for each firm are somewhat different.  For 

instance, Firm A, B and D tend to contact customers for more 

than 93% of invoices, while Firm C contacts customers for only 

32% of the invoices. The invoice payment behavior is also quite 

varied for firms, e.g., 54% of invoices of Firm C are paid on time, 

while only 25% of invoices for Firm B are on time.  These and 

other observations lead us to believe that it is more valuable to 

build individual prediction models for each firm, which is also 

consistent with the results we obtained from the modeling 

experiments. 

 

Table 7. Prediction accuracy of unified model vs. firm-specific 

models 

Test Data Accuracy of unified 

model 

Accuracy of firm 

model 

Firm A 81.78 82.47 

Firm B 88.51 88.89 

Firm C 62.19 65.44 

Firm D 64.81 65.10 

 

4. RELATED WORK 
There are a number of vendors offering pre-packaged solutions for 

order-to-cash. Examples are Oracle’s e-Business Suite Special 

Edition Order Management [5] and SAP’s Order-to-Cash 

Management for Wholesale Distribution [6]. Oracle’s solution 

provides information visibility and reporting capabilities. SAP’s 

solution supports collections and customer relationship 

management. To our best knowledge, none of such solutions 

incorporates analytics, especially predictive modeling for 

improved prioritization of invoices or for customer ranking, with 

subsequence collection process optimization. 

Predictive modeling approaches are widely used in a number of 

related domains, such as credit management and tax collection.  

Talgentra and Accenture are two representative examples. To 

better manage customer credit, Talgentra proposes to use 

predictive modeling approach [7]. They consider the use of 

prediction techniques such as decision trees, association rules, and 

neural networks in order to build customer models. These models 

are then used to predict collection probabilities, most suitable 

payment terms, and schedules for a given customer.  Accenture 

uses assignment rules to optimize workforce utilization (re-

assigning staff to tasks as field collection, telephone collection, 

customer service) for tax collection.  The rules are generated 
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based on probable collection outcomes by learning from historic 

performance numbers and expected new accounts receivable [8].  

However, the details to generate these rules are not given.  In fact, 

since, predictive modeling approaches vary based on the problem 

domains, these solutions are unlikely to sufficient to address 

issues for O2C payment collection.  

There is a small body of work in the O2C domain. One such work 

can be found in [9], in which, a model is used to predict collection 

amounts on customer accounts based on learned relationships 

among known variables. The predictive models are generated with 

historical information on customers, on event patterns for 

customers, or on collectors’ notes for a customer. Neural networks 

are used as one of the approaches for predictive modeling. While 

the approach focuses on collection amounts prediction, we believe 

both amounts and delays are important for collection decision 

making.  Another difference is that we can tackle collections not 

only at the customer level, but also at the invoice level. 

The most closely related work is by Bailey et al. [12].  The 

authors discuss possible improvements over Providian’s cash 

collection strategy. They analyze various strategies for prioritizing 

collection calls and propose to use predictive modeling based on 

binary logistic regression and discriminative analysis to determine 

which clients to “outsource” (i.e., which customer accounts to 

hand over to an outside collections agency for further collection 

processing). The authors present some preliminary results of their 

modeling approach in the form of analytics assuming certain 

prediction accuracies and collection returns.  Their work is 

complementary to ours in that they deal with the cost/benefit 

decisions that would need to be made once the priority/risk of 

each collection item is determined. Our work, on the other hand, 

tries to assess which techniques are best suited for determining 

this priority/risk. 

Other relevant work comes from a number of new companies that 

provide rule engines to prioritize invoices to maximize cash flow.  

For instance, cforia [10], a 2002 start-up, offers various collection 

management solutions. On their website, they claim among other 

AR process improvements, a new way of automatically 

prioritizing invoices based on a rule-based system. They claim 

that “cforia’s rules engine automatically sends the collections and 

deductions teams prioritized ticklers to maximize cash flow.”  

Another start-up, IntelligentResults [11], offers a platform called 

PREDIGY, which provides a variety of business analytics 

capabilities. For example, beside the manual creation of business 

rules, PREDIGY also allows deriving strategies and models via 

automatic data clustering and segmentation. Moreover, they offer 

integrated testing and simulation tools for verifying the 

effectiveness of the derived rules.  These solutions are helpful to 

create, use and validate the rules, once rules are known.  However, 

there is no evidence that these solutions enable automatic rule 

generation by learning from the past, which is the core of our 

approach in this paper. 

5. CONCLUSIONS 
In this paper, we have presented a supervised learning approach 

and the corresponding results in the context of AR collections. 

We developed a set of aggregated features which capture 

historical payment behavior for each customer. Our results show 

that having this set of features enhances the prediction accuracy 

significantly, and it is more valuable in predicting payment delays 

for invoices from returning customers than using customer 

features.  However, we also observed that customer features play 

an important role in the prediction of payment delays when no 

historical information is available, e.g., for invoices from first 

time customers.  We demonstrate that by using cost-sensitive 

learning, we are able to improve prediction accuracy particularly 

for high risk invoices, which are under-presented in the data sets. 

Finally, we compared the prediction performance of a single 

generic model with that of firm-specific models and we showed 

that the latter leads to better prediction accuracy. 
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